组卷网 > 知识点选题 > 椭圆中三角形(四边形)的面积
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 4826 道试题
1 . 如图,已知椭圆和抛物线的焦点的上顶点,过的直线交两点,连接并延长之,分别交两点,连接,设的面积分别为

(1)求的值;
(2)求的值;
(3)求的取值范围.
昨日更新 | 15次组卷 | 1卷引用:上海市闵行区2024届高三下学期学业质量调研(二模)数学试卷
2 . 如图,椭圆的上、下焦点分别为,过上焦点轴垂直的直线交椭圆于两点,动点分别在直线与椭圆上.

(1)求线段的长;
(2)若线段的中点在轴上,求的面积;
(3)是否存在以为邻边的矩形,使得点在椭圆上?若存在,求出所有满足条件的点的纵坐标;若不存在,请说明理由.
昨日更新 | 13次组卷 | 1卷引用:上海市松江区2024届高三下学期模拟考质量监控数学试卷
2024·全国·模拟预测
3 . 已知曲线与曲线关于直线对称.
(1)求曲线的方程.
(2)若过原点的两条直线分别交曲线于点,且为坐标原点),则四边形的面积是否为定值?若为定值,求四边形的面积;若不为定值,请说明理由.
昨日更新 | 17次组卷 | 1卷引用:2024年普通高等学校招生全国统一考试·押题卷数学(七)
4 . 已知椭圆的上顶点为,离心率,过点的直线与椭圆交于两点,直线分别与轴交于点.

(1)求椭圆的方程;
(2)已知命题“对任意直线,线段的中点为定点”为真命题,求的重心坐标;
(3)是否存在直线,使得?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.(其中分别表示的面积)
昨日更新 | 28次组卷 | 1卷引用:上海市杨浦区2024届高三下学期二模质量调研数学试卷
智能选题,一键自动生成优质试卷~
5 . 在圆上任取一点,过点轴的垂线段为垂足,则当点在圆上运动时,可求得线段的中点的轨迹方程是椭圆,相当于把圆压缩后得到了椭圆.现有一条不过原点的直线与椭圆交于两点,则面积的最大值是__________.
昨日更新 | 34次组卷 | 1卷引用:浙江省宁波市鄞州中学2023-2024学年高二上学期11月月考数学试题
6 . (多选)已知分别为椭圆C的左、右焦点,P为椭圆上任意一点(不在x轴上),的内切圆与切于点M,过点的直线lC交于AB两点,则(       
A.的最大值为5
B.的内切圆面积最大值为π
C.为定值1
D.若Q中点,则l的方程为
昨日更新 | 108次组卷 | 1卷引用:山东省烟台市2023-2024学年高二上学期期末考试数学试卷
7 . 已知椭圆的离心率为,长轴长为4,是其左、右顶点,是其右焦点.
(1)求椭圆的标准方程;
(2)设是椭圆上一点,的角平分线与直线交于点
①求点的轨迹方程;
②若面积为,求
8 . 已知椭圆)的左焦点为,上顶点为的两顶点是椭圆上的动点.当为椭圆的左顶点,为椭圆的下顶点时,,且的面积为.
(1)求椭圆的方程;
(2)若的平分线经过点,求面积的最大值.
昨日更新 | 31次组卷 | 1卷引用:江西省赣州市十八县市二十四校2024届高三下学期期中联考数学试题
9 . 已知椭圆的焦点为,且该椭圆经过点
(1)求椭圆的标准方程;
(2)直线且与椭圆交于两点,当面积最大时,求直线的方程.
昨日更新 | 46次组卷 | 1卷引用:江苏省连云港高级中学2023-2024学年高二下学期期中考试数学试卷
10 . 已知椭圆E过点,且焦距为.
(1)求椭圆E的标准方程;
(2)过点作两条互相垂直的弦ABCD,设弦ABCD的中点分别为MN.
①证明:直线MN必过定点;
②若弦ABCD的斜率均存在,求面积的最大值.
共计 平均难度:一般