组卷网 > 知识点选题 > 求椭圆中的参数及范围
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 4 道试题
1 . 已知曲线上一动点到两定点的距离之和为,过点的直线与曲线相交于点
(1)求曲线的方程;
(2)动弦满足:,求点的轨迹方程;
(3)求的取值范围.
2022-09-06更新 | 376次组卷 | 2卷引用:第3章 圆锥曲线与方程 单元综合检测(难点)-2022-2023学年高二数学《基础·重点·难点 》全面题型高分突破(苏教版2019选择性必修第一册)
2 . 过椭圆的中心任作一直线交椭圆于PQ两点,是椭圆的左、右焦点,AB是椭圆的左、右顶点,则下列说法正确的是(       
A.周长的最小值为18
B.四边形可能为矩形
C.若直线PA斜率的取值范围是,则直线PB斜率的取值范围是
D.的最小值为-1
2022-06-14更新 | 3953次组卷 | 8卷引用:第二章 平面解析几何章末检测(能力篇)
21-22高三上·湖南长沙·阶段练习
3 . 设椭圆长轴的左,右顶点分别为AB
(1)若PQ是椭圆上关于x轴对称的两点,直线的斜率分别为,求的最小值;
(2)已知过点的直线l交椭圆CMN两个不同的点,直线分别交y轴于点STO为坐标原点),当直线1的倾斜角为锐角时,求的取值范围.
2021-09-05更新 | 809次组卷 | 6卷引用:专题3.3 圆锥曲线与方程 章末检测3(难)-【满分计划】2021-2022学年高二数学阶段性复习测试卷(苏教版2019选择性必修第一册)
20-21高二下·重庆渝中·期末
4 . 阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点与两定点的距离之比是一个常数,那么动点的轨迹就是阿波罗尼斯圆,圆心在直线上.已知动点的轨迹是阿波罗尼斯圆,其方程为,定点分别为椭圆的右焦点与右顶点,且椭圆的离心率为

(1)求椭圆的标准方程;
(2)如图,过右焦点斜率为的直线与椭圆相交于(点轴上方),点是椭圆上异于的两点,平分平分
①求的取值范围;
②将点看作一个阿波罗尼斯圆上的三点,若外接圆的面积为,求直线的方程.
2021-07-12更新 | 4943次组卷 | 10卷引用:第3章 圆锥曲线与方程 单元综合检测(能力提升)(单元培优)-2021-2022学年高二数学课后培优练(苏教版2019选择性必修第一册)
共计 平均难度:一般