组卷网 > 章节选题 > 必修2
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 5 道试题
1 . 类比思想在数学中极为重要,例如类比于二维平面内的余弦定理,有三维空间中的三面角余弦定理:如图1,由射线构成的三面角,记,二面角的大小为,则.如图2,四棱柱中,为菱形,,且点在底面内的射影为的中点

(1)求的值;
(2)直线与平面内任意一条直线夹角为,证明:
(3)过点作平面,使平面平面,且与直线相交于点,若,求值.
2024-07-20更新 | 811次组卷 | 6卷引用:山东省临沂市2023-2024学年高一下学期期末学科素养水平监测数学试题
2 . 人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设,则欧几里得距离;曼哈顿距离,余弦距离,其中为坐标原点).
(1)若,求之间的曼哈顿距离和余弦距离
(2)若点,求的最大值;
(3)已知点是直线上的两动点,问是否存在直线使得,若存在,求出所有满足条件的直线的方程,若不存在,请说明理由.
2024-07-11更新 | 1758次组卷 | 14卷引用:上海市建平中学2023-2024学年高一下学期期末教学质量检测数学试题
3 . 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲率均为.如图,在直三棱柱中,点的曲率为分别为的中点,且.

(1)证明:平面
(2)若,求二面角的余弦值;
(3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为,棱数为,面数为,则有:.利用此定理试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.
2024-07-07更新 | 1112次组卷 | 4卷引用:湖南省长沙市长郡中学2023-2024学年高一下学期期末考试数学试题
4 . 由若干个平面多边形围成的几何体叫做多面体,围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.对于凸多面体,有著名的欧拉公式:,其中为顶点数,为棱数,为面数.我们可以通过欧拉公式计算立体图形的顶点、棱、面之间的一些数量关系.例如,每个面都是四边形的凸六面体,我们可以确定它的顶点数和棱数.一方面,每个面有4条边,六个面相加共24条边;另一方面,每条棱出现在两个相邻的面中,因此每条棱恰好被计算了两次,即共有12条棱;再根据欧拉公式,,可以得到顶点数.
(1)已知足球是凸三十二面体,每个面均为正五边形或者正六边形,每个顶点与三条棱相邻,试确定足球的棱数;
(2)证明:个顶点的凸多面体,至多有条棱;
(3)已知正多面体的各个表面均为全等的正多边形,且与每个顶点相邻的棱数均相同.试利用欧拉公式,讨论正多面体棱数的所有可能值.
2024-05-04更新 | 1056次组卷 | 7卷引用:浙江省杭州第二中学2023-2024学年高一下学期期中考试数学试卷
5 . 近些年来,三维扫描技术得到空前发展,从而催生了数字几何这一新兴学科.数字几何是传统几何和计算机科学相结合的产物.数字几何中的一个重要概念是曲率,用曲率来刻画几何体的弯曲程度.规定:多面体在顶点处的曲率等于与多面体在该点的所有面角之和的差(多面体的面角是指多面体的面上的多边形的内角的大小,用弧度制表示),多面体在面上非顶点处的曲率均为零.由此可知,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正方体在每个顶点有个面角,每个面角是,所以正方体在各顶点的曲率为 ,故其总曲率为.
(1)求四棱锥的总曲率;
(2)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为,棱数为,面数为,则有:.利用此定理试证明:简单多面体的总曲率是常数.
2022-09-19更新 | 1154次组卷 | 9卷引用:2022年浙江省温州市摇篮杯高一数学竞赛试题
共计 平均难度:一般