组卷网 > 章节选题 > 选修1-1
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 6 道试题
解答题-应用题 | 较易(0.85) |
名校
1 . 某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于万件时,(万元).已知每件产品售价为元,假若该同学生产的商品当年能全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取).
2020-11-19更新 | 1815次组卷 | 40卷引用:浙江省浦江中学、长兴中学、余杭高中三校2021-2022学年高二下学期3月联考数学试题
填空题-双空题 | 较易(0.85) |
2 . 某批发商以每吨20元的价格购进一批建筑材料,若以每吨M元零售,销量N(单位:吨)与零售价M(单位:元)有如下关系:,则该批材料零售价定为_______元时利润最大,利润的最大值为_________元.
2020-12-03更新 | 437次组卷 | 4卷引用:专题5.4 《一元函数的导数及其应用》单元测试卷(B卷提升篇)-2020-2021学年高二数学选择性必修第二册同步单元AB卷(新教材人教A版,浙江专用)
3 . 你是否注意过,市场上等量的小包装的物品一般比大包装的要贵一些?高二某研究小组针对饮料瓶的大小对饮料公司利润的影响进行了研究,调查如下:某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是分,其中r(单位:cm)是瓶子的半径.已知每出售1mL的饮料,制造商可获利0.2分(不考虑瓶子的成本的前提下),且制造商能制作的瓶子的最大半径为6cm.下面结论正确的有(       )(注:;利润可为负数)
A.利润随着瓶子半径的增大而增大B.半径为6cm时,利润最大
C.半径为2cm时,利润最小D.半径为3cm时,制造商不获利
2023-10-14更新 | 400次组卷 | 5卷引用:浙江省宁波市余姚中学2023-2024学年高二上学期第一次质量检测数学试题
4 . 某厂生产某种产品x件的总成本(万元),已知产品单价的平方与产品件数x成反比,生产100件这样的产品单价为50万元,问产量定为多少时,总利润最大?(总利润总销售额总成本)
5 . 某工厂共有10台机器共同生产一种仪器的元件,由于受生产能力和技术水平等因素的影响,会产生一定数量的次品.根据经验知道,每台机器生产的次品数(万件)与每台机器的日产量(万件)之间满足关系:,已知每生产1万件合格的元件可盈利2万元,但每生产1万件次品将亏损1万元.
(1)试将该工厂每天生产这种元件所获得的利润(万元)表示为关于(万件)的函数(利润盈利亏损);
(2)当每台机器的日产量(万件)为多少时,获得的利润最大,最大利润为多少?
2022-03-20更新 | 477次组卷 | 1卷引用:浙江省精诚联盟2021-2022学年高二下学期3月联考数学试题
6 . 某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”系列进行市场销售量调研,通过对该品牌的系列一个阶段的调研得知,发现系列每日的销售量(单位:千克)与销售价格(元/千克)近似满足关系式,其中为常数.已知销售价格为6元/千克时,每日可售出系列15千克.
(1)求函数的解析式;
(2)若系列的成本为4元/千克,试确定销售价格的值,使该商场每日销售系列所获得的利润最大.
2018-06-30更新 | 2887次组卷 | 14卷引用:浙江省山河联盟2022-2023学年高二下学期3月联考数学试题
共计 平均难度:一般