组卷网 > 章节选题 > 选修2-3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 179 道试题
23-24高三上·北京石景山·期末
1 . 某学校体育课进行投篮练习,投篮地点分为区和区,每一个球可以选择在区投篮也可以选择在区投篮,在区每投进一球得2分,没有投进得0分;在区每投进一球得3分,没有投进得0分.学生甲在两区的投篮练习情况统计如下表:

投篮次数

得分

假设用频率估计概率,且学生甲每次投篮相互独立.
(1)试分别估计甲在区,区投篮命中的概率;
(2)若甲在区投个球,在区投个球,求甲在区投篮得分高于在区投篮得分的概率;
(3)若甲在区,区一共投篮次,投篮得分的期望值不低于分,直接写出甲选择在区投篮的最多次数.(结论不要求证明)
2024-01-22更新 | 541次组卷 | 4卷引用:2024年高考数学二轮复习测试卷(北京专用)
23-24高三上·北京昌平·期末
2 . 已知,则       
A.B.32C.495D.585
2024-01-20更新 | 585次组卷 | 3卷引用:2024年高考数学二轮复习测试卷(北京专用)
3 . 已知某足球赛事的决赛将在甲、乙两队之间进行.其规则为:每一场比赛均须决出胜负,按主、客场制先进行两场比赛(第一场在甲队主场比赛),若某一队在前两场比赛中均获胜,则该队获得冠军;否则,两队需在中立场进行第三场比赛,且其获胜方为冠军.已知甲队在主场、客场、中立场获胜的概率依次为,且每场比赛的胜负均相互独立.
(1)当甲队获得冠军时,求决赛需进行三场比赛的概率;
(2)若主办方在决赛的前两场中共投资(千万元),则能在这两场比赛中共盈利(千万元).如果需进行第三场比赛,且主办方在第三场比赛中投资(千万元),则能在该场比赛中盈利(千万元).若主办方最多能投资一千万元,请以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为多少万元?
2024-01-02更新 | 653次组卷 | 5卷引用:黄金卷07
23-24高三上·江西九江·阶段练习
单选题 | 适中(0.65) |
4 . 已知,则       
A.B.2C.4D.12
2024-01-01更新 | 692次组卷 | 3卷引用:黄金卷06
23-24高三上·辽宁丹东·阶段练习
单选题 | 适中(0.65) |
5 . 对任意的实数x,则值为(     
A.60B.120C.240D.480
23-24高三上·辽宁朝阳·阶段练习
单选题 | 较易(0.85) |
名校
6 . 在二项式的展开式中,二项式系数最大的是(       
A.第3项B.第4项
C.第5项D.第3项和第4项
2023-12-07更新 | 1160次组卷 | 6卷引用:黄金卷04
2014·山东青岛·一模
填空题-单空题 | 容易(0.94) |
名校
7 . 展开式的常数项为______.
2023-11-30更新 | 2588次组卷 | 19卷引用:数学(北京卷01)
23-24高三上·重庆·期中
名校
8 . 王老师每天早上7:00准时从家里出发去学校,他每天只会从地铁与汽车这两种交通工具之间选择一个乘坐.王老师多年积累的数据表明,他到达学校的时间在两种交通工具下的概率分布如下表所示:
到校时间7:30之前7:30-7:357:35-7:407:40-7:457:45-7:507:50之后
乘地铁0.10.150.350.20.150.05
乘汽车0.250.30.20.10.10.05
(例如:表格中0.35的含义是如果王老师当天乘地铁去学校,则他到校时间在7:35-7:40的概率为0.35.)
(1)某天早上王老师通过抛一枚质地均匀的硬币决定乘坐地铁还是乘坐汽车去学校,若正面向上则坐地铁,反面向上则坐汽车.求他当天7:40-7:45到校的概率;
(2)已知今天(第一天)王老师选择乘坐地铁去学校,从第二天开始,若前一天到校时间早于7:40,则当天他会乘坐地铁去学校,否则当天他将乘坐汽车去学校.且若他连续10天乘坐地铁,则不论他前一天到校的时间是否早于7:40,第11天他都将坐汽车到校.记他从今天起(包括今天)到第一次乘坐汽车去学校前坐地铁的次数为,求
(3)已知今天(第一天)王老师选择乘坐地铁去学校.从第二天开始,若他前一天坐地铁去学校且到校时间早于7:40,则当天他会乘坐地铁去学校;若他前一天坐地铁去学校且到校时间晚于7:40,则当天他会乘坐汽车去学校;若他前一天乘坐汽车去学校,则不论他前一天到校的时间是否早于7:40,当天他都会乘坐地铁去学校.记为王老师第天坐地铁去学校的概率,求的通项公式.
2023-11-27更新 | 2037次组卷 | 8卷引用:黄金卷05
9 . 为弘扬中国共产党百年奋斗的光辉历程,某校团委决定举办“中国共产党党史知识”竞赛活动.竞赛共有两类试题,每类试题各10题,其中每答对1道类试题得10分;每答对1道类试题得20分,答错都不得分.每位参加竞赛的同学从这两类试题中共抽出3道题回答(每道题抽后不放回).已知某同学类试题中有7道题能答对,而他答对各道类试题的概率均为
(1)若该同学只抽取3道类试题作答,设表示该同学答这3道试题的总得分,求的分布和期望;
(2)若该同学在类试题中只抽1道题作答,求他在这次竞赛中仅答对1道题的概率.
23-24高二上·湖南常德·期中
解答题-应用题 | 适中(0.65) |
名校
10 . 甲、乙准备进行一局羽毛球比赛,比赛规定:一回合中赢球的一方作为下一回合的发球方.若甲发球,则本回合甲赢的概率为,若乙发球,则本回合甲赢的概率为,每回合比赛的结果相互独立.经抽签决定,第1回合由甲发球.
(1)求第3回合由乙发球的概率;
(2)求前3个回合中甲赢的回合数不低于乙的概率.
共计 平均难度:一般