组卷网 > 章节选题 > 选修2-3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 1306 道试题
20-21高二下·全国·课后作业
解答题-问答题 | 适中(0.65) |
名校
解题方法
1 . 用0,1,2,3,…,9十个数字可能组成多少个不同的
(1)三位数;
(2)无重复数字的三位数;
(3)小于500且没有重复数字的自然数?
2024-04-23更新 | 202次组卷 | 18卷引用:第01讲 分类加法计数原理与分步乘法计数原理 (高频考点,精讲)-2
2 . 近年来,长安区大力发展大花卉产业,其中玫瑰既有观赏价值也能加工成食品和高档化妆品而得到环山路一带农民大面种植.已知玫瑰的株高y(单位:cm)与一定范围内的温度x(单位:)有关,现收集了玫瑰的13组观测数据,得到如下的散点图:

现根据散点图利用建立y关于x的回归方程,令得到如下数据:

10.15

109.94

3.04

0.16

13.94

11.67

0.21

21.22

的相关系数分别为,且
(1)用相关系数说明哪种模型建立yx的回归方程更合适;
(2)根据(1)的结果及表中数据,建立y关于x的回归方程;
(3)已知玫瑰的利润zxy的关系为,当x为何值时,z的预期最大.
参考数据和公式:,对于一组数据,其回归直线方程的斜率和截距的最小二乘法估计分别为,相关系数
2024-04-10更新 | 1606次组卷 | 18卷引用:专题2.5 概率与统计-回归分析、独立性检验-2021年高考数学解答题挑战满分专项训练(新高考地区专用)
3 . 2024年3月4日,丰城市农业局在市委组织下召开推进湖塘-董家富硒梨产业高质量发展专题会议,安排部署加快推进特色优势产业富硒梨高质量发展工作,集中资源、力量打造“富硒梨”公共品牌.丰城市为做好富硒梨产业的高质量发展,项目组统计了某果场近5年富硒梨产业综合总产值的各项数据如下:年份x,综合产值y(单位:万元)
年份20192020202120222023
年份代码12345
综合产值23.137.062.1111.6150.8
(1)根据表格中的数据,可用一元线性回归模型刻画变量y与变量x之间的线性相关关系,请用相关系数加以说明(精确到0.01);
(2)求出y关于x的经验回归方程,并预测2024年底该果场富硒梨产业的综合总产值.
参考公式:相关系数回归方程中斜率和截距的最小二乘法估计公式分别为:
参考数据:
2024-04-02更新 | 771次组卷 | 9卷引用:第三节 成对数据的统计分析(第一课时) B卷素养养成卷 一轮复习点点通
4 . 法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1 000 g,上下浮动不超过50 g.这句话用数学语言来表达就是:每个面包的质量服从期望为1 000 g,标准差为50 g的正态分布.
(1)已知如下结论:若XNμσ2),从X的取值中随机抽取kkN*k≥2)个数据,记这k个数据的平均值为Y,则随机变量YN.利用该结论解决下面问题.
①假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为Y,求PY≤980);
②庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在区间(950,1 050)内,并得出计算25个面包的平均质量为978.72 g.庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举报该面包师的理由;
(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包2个;第二箱中共装有8个面包,其中黑色面包3个.现随机挑选一箱,然后从该箱中随机取出2个面包,求取出黑色面包个数的分布列及数学期望.
附:①若随机变量η服从正态分布Nμσ2),则Pμσημσ)≈0.682 7,Pμ-2σημ+2σ)≈0.954 5,Pμ-3σημ+3σ)≈0.997 3;②通常把发生概率小于0.05的事件称为小概率事件,小概率事件基本不会发生.
2024-03-21更新 | 383次组卷 | 20卷引用:8.3 正态分布-【题型分类归纳】2022-2023学年高二数学同步讲与练(苏教版2019选择性必修第二册)
5 . 某校高一、高二、高三年级的学生人数之比为3:3:4,三个年级的学生都报名参加公益志愿活动,经过选拔,高一年级有的学生成为公益活动志愿者,高二、高三年级各有的学生成为公益活动志愿者.
(1)设事件“在三个年级中随机抽取的1名学生是志愿者”;事件“在三个年级中随机抽取1名学生,该生来自高年级”().请完成下表中不同事件的概率并写出演算步骤:
事件概率
概率值
(2)若在三个年级中随机抽取1名学生是志愿者,根据以上表中所得数据,求该学生来自于高一年级的概率.
2024-03-19更新 | 474次组卷 | 10卷引用:考点巩固卷24 古典概型、相互独立、条件概率及全概率公式(七大考点)
6 . 某公司为了解市场对其开发的新产品的需求情况,共调查了250名顾客,采取100分制对产品功能满意程度、产品外观满意程度分别进行评分,其中对产品功能满意程度的评分服从正态分布,对产品外观满意程度评分的频率分布直方图如图所示,规定评分90分以上(不含90分)视为非常满意.

   

(1)本次调查对产品功能非常满意和对产品外观非常满意的各有多少人?(结果四舍五入取整数)
(2)若这250人中对两项都非常满意的有2人,现从对产品功能非常满意和对产品外观非常满意的人中随机抽取3人,设3人中两项都非常满意的有X人,求X的分布列和数学期望. (附:若,则
2024-03-19更新 | 653次组卷 | 7卷引用:专题8-2分布列综合归类-2
7 . 已知mn是正整数,的展开式中x的系数为7.
(1)求mn为何值时,的展开式中的系数最小,并求出此时的系数;
(2)利用(1)中结果,求的近似值.(精确到0.01)
2024-03-14更新 | 319次组卷 | 12卷引用:模块二专题3 《计数原理》单元检测篇 B提升卷(人教A)
8 . 乒乓球起源于英国的19世纪末,因为1959年的世界乒乓球锦标赛,中国参赛运动员为中国获得了第一个世界冠军,而使国人振奋,从此乒乓球运动在中国风靡,成为了事实上中国的国球的体育项目.国球在校园中的普及也丰富了老师、同学们的业余生活.某校拟从5名优秀乒乓球爱好者中抽选人员分批次参加社区共建活动.共建活动共分3批次进行,每次活动需要同时派送2名选手,且每次派送选手均从5人中随机抽选.已知这5名选手中,2人有比赛经验,3人没有比赛经验.
(1)求5名选手中的“1号选手”,在这3批次活动中有且只有一次被抽选到的概率;
(2)求第二次抽选时,选到没有比赛经验的选手的人数最有可能是几人?请说明理由;
(3)现在需要2名乒乓球选手完成某项特殊比赛任务,每次只能派一个人,且每个人只派一次,如果前一位选手不能赢得比赛,则再派另一位选手.若有A两位选手可派,他们各自完成任务的概率分别为,且,各人能否完成任务相互独立.试分析以怎样的顺序派出选手,可使所需派出选手的人员数目的数学期望达到最小.
2024-03-14更新 | 568次组卷 | 4卷引用:第5套 全真模拟篇5复盘卷
9 . 直播带货是一种直播和电商相结合的销售手段,目前已被广大消费者所接受.针对这种现状,某公司决定逐月加大直播带货的投入,直播带货金额稳步提升,以下是该公司2023年前5个月的带货金额的统计表(金额(万元)).
月份1月2月3月4月5月
月份编号12345
金额(万元)712131924
(1)根据统计表,
①求该公司带货金额的平均值
②求该公司带货金额与月份编号的样本相关系数(精确到0.01),并判断它们是否具有线性相关关系(,则认为的线性相关性较强;,则认为的线性相关性较弱);
(2)该公司现有一个直播间销售甲、乙两种产品.为对产品质量进行监控,质检人员先用简单随机抽样的方法从甲、乙两种产品中分别抽取了5件、3件产品进行初检,再从中随机选取3件做进一步的质检,记抽到甲产品的件数为,试求的分布列与期望.
附:相关系数公式,参考数据:.
2024-03-08更新 | 865次组卷 | 6卷引用:专题8.1 成对数据的统计相关性【六大题型】-2023-2024学年高二数学举一反三系列(人教A版2019选择性必修第三册)
10 . 某工厂有工人200名,统计他们某天加工产品的件数,统计数据如下表所示:
加工产品的件数
人数5080402010
规定一天加工产品件数大于70的工人为“生产标兵”.已知这天的生产标兵中年龄大于30岁的有15人,这15人占该工厂年龄大于30岁的工人数的
(1)完成下面的列联表,根据小概率值的独立性检验,能否认为该工厂的工人是否为生产标兵与年龄有关?

年龄不大于30岁年龄大于30岁
生产标兵

非生产标兵


(2)该工厂采用“阶梯式”的计件工资:日加工产品不超过50件的部分每件1元,超过50件但不超过60件的部分每件2元,超过60件但不超过80件的部分每件3元,超过80件的部分每件5元.假设工人小张每天加工产品的件数只可能为样本数据中各分组区间的右端点值,用对应区间的频率估计其概率,求小张每天的计件工资(单位:元)的期望.
附:
0.050.010.001
3.8416.63510.828
2024-03-03更新 | 225次组卷 | 3卷引用:8.3 列联表与独立性检验(分层练习,6大题型)-2023-2024学年高二数学同步精品课堂(人教A版2019选择性必修第三册)
共计 平均难度:一般