名校
解题方法
1 . 如图,在正四棱柱中,,,是的中点.
(2)证明:;
(3)求点到平面的距离.
(1)求证:平面;
(2)证明:;
(3)求点到平面的距离.
您最近一年使用:0次
2024-08-30更新
|
983次组卷
|
2卷引用:北京东直门中学2023-2024学年高一下学期6月月考数学试题
2 . 我们知道,在平面内取定单位正交基底建立坐标系后,任意一个平面向量,都可以用二元有序实数对表示.平面向量又称为二维向量,一般地,n元有序实数组称为n维向量,它是二维向量的推广.类似二维向量,对于n维向量,可定义两个向量的数量积,向量的长度(模)等:设,,则;.已知向量满足,向量满足
(1)求的值;
(2)若,其中.
(i)求证:;
(ii)当且时,证明:.
(1)求的值;
(2)若,其中.
(i)求证:;
(ii)当且时,证明:.
您最近一年使用:0次
2024-09-27更新
|
799次组卷
|
6卷引用:滚动月考卷2 周测1---周测13 (一轮好卷北京专版 )
(已下线)滚动月考卷2 周测1---周测13 (一轮好卷北京专版 )吉林省长春市第八中学2025届高三上学期一模数学试卷(已下线)考点26 导数的应用--不等式问题 --高考数学100个黄金考点(2025届)【讲】(已下线)滚动月考卷2 (高三大一轮好卷基础卷)(已下线)第四节 数列的求和【同步课时】(高三一轮北京专版)宁夏回族自治区石嘴山市2024-2025学年高三上学期10月期中教学质量检测数学试题
3 . 集合论在离散数学中有着非常重要的地位.对于非空集合和,定义和集,用符号表示和集内的元素个数.
(1)已知集合,,,若,求的值;
(2)记集合,,,为中所有元素之和,,求证:;
(3)若与都是由个整数构成的集合,且,证明:若按一定顺序排列,集合与中的元素是两个公差相等的等差数列.
(1)已知集合,,,若,求的值;
(2)记集合,,,为中所有元素之和,,求证:;
(3)若与都是由个整数构成的集合,且,证明:若按一定顺序排列,集合与中的元素是两个公差相等的等差数列.
您最近一年使用:0次
2024-06-07更新
|
782次组卷
|
3卷引用:北京市第八中学2024-2025学年高三上学期暑假第一阶段(开学)练习数学试题
4 . 已知函数,曲线在点处的切线为,记.
(1)当时,求切线的方程;
(2)在(1)的条件下,求函数的零点并证明;
(3)当时,直接写出函数的零点个数.(结论不要求证明)
(1)当时,求切线的方程;
(2)在(1)的条件下,求函数的零点并证明;
(3)当时,直接写出函数的零点个数.(结论不要求证明)
您最近一年使用:0次
5 . 已知函数,.
(1)求证:为偶函数;
(2)设,判断的单调性,并用单调性定义加以证明.
(1)求证:为偶函数;
(2)设,判断的单调性,并用单调性定义加以证明.
您最近一年使用:0次
6 . 已知函数.
(1)求证函数为奇函数;
(2)判断在区间上的单调性,并用定义进行证明;
(3)求在区间[2,6]上的最大值与最小值.
(1)求证函数为奇函数;
(2)判断在区间上的单调性,并用定义进行证明;
(3)求在区间[2,6]上的最大值与最小值.
您最近一年使用:0次
7 . 已知函数(a为常数).
(1)求函数的单调区间;
(2)若存在两个不相等的正数,满足,求证:.
(3)若有两个零点,,证明:.
(1)求函数的单调区间;
(2)若存在两个不相等的正数,满足,求证:.
(3)若有两个零点,,证明:.
您最近一年使用:0次
2023-12-30更新
|
1989次组卷
|
11卷引用:北京市丰台区怡海中学2024-2025学年高三上学期11月期中考试数学试题
北京市丰台区怡海中学2024-2025学年高三上学期11月期中考试数学试题黑龙江省哈尔滨市第六中学校2022-2023学年高三上学期期中数学试题(已下线)5.3 导数在研究函数中的应用(练习)-高二数学同步精品课堂(苏教版2019选择性必修第一册)福建省宁德市福安市福安一中2023-2024学年高三上学期10月月考数学试题(已下线)模块三 大招24 对数平均不等式(已下线)模块三 大招10 对数平均不等式重庆缙云教育联盟2024届高三高考第一次诊断性检测数学试卷(已下线)模块五 专题6 全真拔高模拟6(已下线)模块2专题7 对数均值不等式 巧妙解决双变量练(已下线)专题6 导数与零点偏移【练】(已下线)专题16 对数平均不等式及其应用【讲】
名校
8 . 如图,在多面体中,四边形是边长为的正方形,平面平面,,,.
(2)求平面与平面夹角的余弦值;
(3)线段上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由.
(1)求证:平面;
(2)求平面与平面夹角的余弦值;
(3)线段上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由.
您最近一年使用:0次
2023-11-03更新
|
606次组卷
|
3卷引用:北京市丰台区2023-2024学年高二上学期期中练习数学试题(A)
名校
9 . 个有次序的实数所组成的有序数组称为一个维向量,其中称为该向量的第个分量.特别地,对一个维向量,若,称为维信号向量.设,则和的内积定义为,且.
(1)直接写出4个两两垂直的4维信号向量.
(2)证明:不存在14个两两垂直的14维信号向量.
(3)已知个两两垂直的2024维信号向量满足它们的前个分量都是相同的,求证:.
(1)直接写出4个两两垂直的4维信号向量.
(2)证明:不存在14个两两垂直的14维信号向量.
(3)已知个两两垂直的2024维信号向量满足它们的前个分量都是相同的,求证:.
您最近一年使用:0次
2023-11-15更新
|
425次组卷
|
7卷引用:北京市西城区北京师范大学附属实验中学2023-2024学年高二上学期期中考试数学试题
北京市西城区北京师范大学附属实验中学2023-2024学年高二上学期期中考试数学试题北京市北京师范大学附属中学2023-2024学年高二上学期数学期中考试数学试题北京市第十一中学2023-2024学年高一下学期期中练习数学试卷(已下线)第3章 空间向量及其应用(压轴题专练)-2023-2024学年高二数学单元速记·巧练(沪教版2020选择性必修第一册)(已下线)模块三 专题2 专题1 平面向量运算(已下线)模块三 专题2 解答题分类练 专题3 平面向量各类运算(解答题)安徽省合肥市普通高中六校联盟2023-2024学年高一下学期期末联考数学试卷
名校
解题方法
10 . 如图,为矩形,为梯形,平面平面,,,.
(2)求直线与直线所成角的大小;
(3)设平面平面,试判断l与平面能否垂直?并证明你的结论.
(2)求直线与直线所成角的大小;
(3)设平面平面,试判断l与平面能否垂直?并证明你的结论.
您最近一年使用:0次
2023-10-17更新
|
465次组卷
|
2卷引用:北京市八一学校2023-2024学年高二上学期10月月考数学试题