名校
解题方法
1 . 已知实数满足,则的最大值为______ ;的取值范围为______ .
您最近一年使用:0次
名校
解题方法
2 . 设双曲线的左、右焦点分别为,过坐标原点的直线与交于点,,则的离心率为____________ .
您最近一年使用:0次
2024-02-29更新
|
604次组卷
|
5卷引用:重庆市铜梁中学校2023-2024学年高二下学期开学考试数学试题
重庆市铜梁中学校2023-2024学年高二下学期开学考试数学试题吉林省四校2023-2024学年高二下学期期初联考数学试题(已下线)专题15 双曲线离心率(一题多解)河北省石家庄精英中学2023-2024学年高二上学期期末数学试题(已下线)第1题 双曲线的离心率问题(5月)(压轴小题)
3 . 已知,若在内恰有两个零点,则的取值范围是______ .
您最近一年使用:0次
4 . 已知函数,(,),若存在直线l,使得l是曲线与曲线的公切线,则实数a的取值范围是__________ .
您最近一年使用:0次
名校
5 . 已知定义在上的偶函数满足,且当时,.若,则在点处的切线方程为______ .(结果用含的表达式表示)
您最近一年使用:0次
2024-02-20更新
|
1688次组卷
|
2卷引用:重庆市第八中学校2023-2024学年高三下学期入学适应性考试数学试题
6 . 如图,正方形的边长为1,连接各边的中点得到正方形,连接正方形各边的中点得到正方形,依此方法一直进行下去.记为正方形的面积,为正方形的面积,为正方形的面积,…….. 为的前项和.给出下列四个结论:
①存在常数,使得恒成立;②存在正整数,当时,;③存在常数,使得恒成立;④存在正整数,当时,其中所有正确结论的序号是_________ .
①存在常数,使得恒成立;②存在正整数,当时,;③存在常数,使得恒成立;④存在正整数,当时,其中所有正确结论的序号是
您最近一年使用:0次
2024-01-19更新
|
339次组卷
|
3卷引用:重庆市万州二中教育集团2023-2024学年高二下学期入学质量监测数学试题
重庆市万州二中教育集团2023-2024学年高二下学期入学质量监测数学试题北京市东城区2023-2024学年高二上学期期末统一检测数学试卷(已下线)第4章 数列 单元综合检测(难点)-2023-2024学年高二数学同步精品课堂(沪教版2020选择性必修第一册)
名校
解题方法
7 . 若定义在上的函数满足,且当时,,则________________ ,若,则满足不等式的的取值范围是_______________ .
您最近一年使用:0次
2024-01-11更新
|
461次组卷
|
3卷引用:重庆市九龙坡区育才中学2023-2024学年高一下学期寒假检测定时训练数学试题
重庆市九龙坡区育才中学2023-2024学年高一下学期寒假检测定时训练数学试题重庆市北碚区2023-2024学年高一上学期期末学业水平阶段质量调研抽测数学试题(已下线)专题05 三角函数4-2024年高一数学寒假作业单元合订本
名校
解题方法
8 . 如图,已知椭圆,其焦距为4,过椭圆长轴上一动点作直线交椭圆于、,直线、交于点,已知,则椭圆的离心率为______ .
您最近一年使用:0次
2024-01-11更新
|
382次组卷
|
2卷引用:重庆市乌江新高考协作体2023-2024学年高二下学期开学学业质量联合调研抽测数学试题
名校
9 . 已知有限集合,定义集合中的元素个数为集合的“容量”,记为.若集合,则__________ ;若集合,且,则正整数的值是__________ .
您最近一年使用:0次
2023-09-19更新
|
733次组卷
|
4卷引用:重庆市南开中学校2023-2024学年高一上学期开学考试数学试题
名校
解题方法
10 . 定义在上的偶函数满足,且当时,,函数是定义在上的奇函数,当时,,则函数的零点的个数是________ .
您最近一年使用:0次
2023-09-03更新
|
588次组卷
|
2卷引用:重庆市七校2024届高三上学期开学考试数学试题