组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 83 道试题
1 . e是自然对数的底数,,已知,则下列结论一定正确的是(       
A.若,则B.若,则
C.若,则D.若,则
2023-02-12更新 | 4071次组卷 | 12卷引用:【课后练】专题6 导数中的同构问题 课后作业-湘教版(2019)选择性必修第二册 第1章 导数及其应用
2 . 从商业化书店到公益性城市书房,再到“会呼吸的文化森林”——图书馆,建设高水平、现代化、开放式的图书馆一直以来是大众的共同心声.现有一块不规则的地,其平面图形如图1所示,(百米),建立如图2所示的平面直角坐标系,将曲线看成函数图象的一部分,为一次函数图象的一部分,若在此地块上建立一座图书馆,平面图为直角梯形(如图2),则图书馆占地面积(万平方米)的最大值为(       
A.B.C.D.
3 . 设,用表示不超过的最大整数,则称为“取整函数”,如:.现有关于“取整函数”的两个命题:①集合是单元素集:②对于任意成立,则以下说法正确的是 (       
A.①②都是真命题B.①是真命题②是假命题
C.①是假命题②是真命题D.①②都是假命题
2024-01-15更新 | 1119次组卷 | 6卷引用:1.5.1 全称量词与存在量词——课后作业(提升版)
4 . 已知函数,则(       
A.函数为偶函数
B.函数为奇函数
C.函数在区间上的最大值与最小值之和为0
D.设,则的解集为
2021-08-02更新 | 4002次组卷 | 14卷引用:试卷18(第1章-6.3 对数函数)-2021-2022学年高一数学易错题、精典题滚动训练(苏教版2019必修第一册)
智能选题,一键自动生成优质试卷~
5 . 2024年1月,某市的高二调研考试首次采用了“”新高考模式.该模式下,计算学生个人总成绩时,“”的学科均以原始分记入,再选的“2”个学科(学生在政治、地理、化学、生物中选修的2科)以赋分成绩记入.赋分成绩的具体算法是:先将该市某再选科目原始成绩按从高到低划分为五个等级,各等级人数所占比例分别约为.依照转换公式,将五个等级的原始分分别转换到五个分数区间,并对所得分数的小数点后一位进行“四舍五入”,最后得到保留为整数的转换分成绩,并作为赋分成绩.具体等级比例和赋分区间如下表:
等级
比例
赋分区间
已知该市本次高二调研考试化学科目考试满分为100分.

(1)已知转换公式符合一次函数模型,若学生甲、乙在本次考试中化学的原始成绩分别为84,78,转换分成绩为78,71,试估算该市本次化学原始成绩B等级中的最高分.
(2)现从该市本次高二调研考试的化学成绩中随机选取100名学生的原始成绩进行分析,其频率分布直方图如图所示,求出图中的值,并用样本估计总体的方法,估计该市本次化学原始成绩等级中的最低分.
2024-03-21更新 | 861次组卷 | 8卷引用:9.2.1?总体取值规律的估计——课后作业(提升版)
6 . 在复习了函数性质后,某同学发现:函数为奇函数的充要条件是的图彖关于坐标原点成中心对称:可以引申为:函数为奇函数,则图象关于点成中心对称.现在已知函数的图象关于成中心对称,则下列结论正确的是(       
A.
B.
C.
D.对任意,都有
7 . 某微生物科研团队为了研究某种细菌的繁殖情况,工作人员配制了一种适合该细菌繁殖的营养基质用以培养该细菌,通过相关设备以及分析计算后得到:该细菌在前3个小时的细菌数与时间(单位:小时,且)满足回归方程(其中为常数),若,且前3个小时的部分数据如下表:

1

2

3

3个小时后,向该营养基质中加入某种细菌抑制剂,分析计算后得到细菌数与时间(单位:小时,且)满足关系式:,在时刻,该细菌数达到最大,随后细菌个数逐渐减少,则的值为(       
A.4B.C.5D.
2022-10-03更新 | 1321次组卷 | 10卷引用:9.1.2线性回归方程(2)
8 . 经过市场调研发现,某公司生产的某种时令商品在未来一个月(30天)内的日销售量(百件)与时间第天的关系如下表所示:
131030
日销售量(百件)23
未来30天内,受市场因素影响,前15天此商品每天每件的利润(元)与时间第天的函数关系式为,且为整数,而后15天此商品每天每件的利润与时间第天的函数关系式为,且为整数).
(1)现给出以下两类函数模型:①为常数);②为常数,.分析表格中的数据,请说明哪类函数模型更合适,并求出该函数解析式;
(2)若这30天内该公司此商品的日销售利润始终不能超过4万元,则考虑转型.请判断该公司是否需要转型?并说明理由.
9 . 阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数的图象是向下凸的,在上任意取两个点,函数的图象总是在线段的下方,此时函数称为下凸函数;函数的图象是向上凸的,在上任意取两个点,函数的图象总是在线段的上方,则函数称为上凸函数.具有这样特征的函数通常称做凸函数.

定义1:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点之间的部分位于线段的下方.定义2:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点之间的部分位于线段的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数为上凸函数,在上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:
(1)请尝试列举一个下凸函数:___________;
(2)求证:二次函数是上凸函数;
(3)已知函数,若对任意,恒有,尝试数形结合探究实数a的取值范围.
2022-03-01更新 | 1358次组卷 | 4卷引用:聚焦核心素养-一元二次函数、方程和不等式
10 . 在①是三次函数,且,②是二次函数,且这两个条件中任选一个作为已知条件,并回答下列问题.
(1)求函数的解析式;
(2)求的图象在处的切线l与两坐标轴围成的三角形的面积.
2021-10-22更新 | 1713次组卷 | 12卷引用:5.2 导数的运算-2021-2022学年高二数学尖子生同步培优题典(苏教版2019选择性必修第一册)
共计 平均难度:一般