解题方法
1 . 已知椭圆的离心率为,分别是椭圆的左、右焦点,是椭圆上一点,且的周长是6,.
(1)求椭圆的方程;
(2)设直线经过椭圆的左焦点且与椭圆交于不同的两点,求证:直线与直线的斜率的和为定值.
(1)求椭圆的方程;
(2)设直线经过椭圆的左焦点且与椭圆交于不同的两点,求证:直线与直线的斜率的和为定值.
您最近一年使用:0次
名校
解题方法
2 . 在平面直角坐标系中,已知椭圆:()的离心率为,焦距为,其上、下顶点分别为、,直线:与轴交于点,点是椭圆上的动点(异于、),直线、分别与直线:交于点、,连接,与椭圆交于点
(1)求椭圆的标准方程;
(2)设的面积为,的面积为,试判断是否为定值?并说明理由
(1)求椭圆的标准方程;
(2)设的面积为,的面积为,试判断是否为定值?并说明理由
您最近一年使用:0次
名校
解题方法
3 . 已知椭圆的离心率为,以的长轴为直径的圆的方程为.
(1)求的方程;
(2)直线与轴平行,且与交于,两点,,分别为的左、右顶点.直线与交于点,证明:点与点的横坐标的乘积为定值.
(1)求的方程;
(2)直线与轴平行,且与交于,两点,,分别为的左、右顶点.直线与交于点,证明:点与点的横坐标的乘积为定值.
您最近一年使用:0次
2021-01-17更新
|
398次组卷
|
5卷引用:吉林省白城市第一中学2021届高三下学期质量检测数学(理)试题
4 . 已知椭圆的离心率为,过椭圆的焦点且与长轴垂直的弦长为1.
(1)求椭圆的方程;
(2)设点为椭圆上位于第一象限内一动点,分别为椭圆的左顶点和下顶点,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值.
(1)求椭圆的方程;
(2)设点为椭圆上位于第一象限内一动点,分别为椭圆的左顶点和下顶点,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值.
您最近一年使用:0次
2021-08-07更新
|
1582次组卷
|
20卷引用:【全国百强校】吉林省实验中学2019届高三上学期第四次模拟考试数学(文)试题
【全国百强校】吉林省实验中学2019届高三上学期第四次模拟考试数学(文)试题【省级联考】福建省2019届高中毕业班数学学科备考关键问题指导系列数学(文科)适应性练习(二)【全国百强校】北京市清华大学附属中学2019届高三下学期第三次模拟考试数学(文)试题江西省上饶市横峰中学2020届高三下学期高考适应性考试数学(理)试题(已下线)专题05 平面解析几何——2020年高考真题和模拟题理科数学分项汇编安徽省宣城市郎溪县2020届高三下学期仿真模拟考试(最后一卷)文科数学试题(已下线)【南昌新东方】江西省南昌十九中2020-2021学年高三上学期10月第一次月考数学(理)试题广东省珠海市第二中学2021届高三上学期10月月考数学试题广东省普宁市七校联合体2021届高三上学期(11月)第二次联考数学试题(已下线)模块检测卷三(B卷 滚动提升检查)-2021年高考数学一轮复习单元滚动双测卷(新高考地区专用)江苏省南京市玄武高级中学、人民中学2021-2022学年高三上学期期初考前模拟数学试题(已下线)第45讲 解析几何的三角形、四边形面积问题及面积比问题-2022年新高考数学二轮专题突破精练(已下线)必刷卷03 (文)-2022年高考数学考前信息必刷卷(全国乙卷)(已下线)专题39 圆锥曲线中的定点、定值问题-1辽宁省丹东市凤城市第一中学2018-2019学年高二(下)4月月考数学(文科)试题江西省宜春市宜丰中学2019-2020学年高二下学期开学考试数学(理科)试题江西省靖安中学2019-2020学年高二下学期第一次月考数学(理)试题河北省邯郸市大名中学2019-2020学年高二(清北班)下学期第五次半月考(6月9日)数学试题江西省新余市2020-2021学年高二下学期期末数学(文)试题人教B版(2019) 选修第一册 过关检测 第二章 专题6 直线与圆锥曲线的综合问题
名校
解题方法
5 . 已知椭圆的离心率为,、分别是椭圆的左、右焦点,是椭圆上一点,且的周长是6.
(1)求椭圆的方程;
(2)设直线经过椭圆的右焦点且与交于不同的两点,,试问:在轴上是否存在点,使得直线与直线的斜率的和为定值?若存在,请求出点的坐标;若不存在,请说明理由.
(1)求椭圆的方程;
(2)设直线经过椭圆的右焦点且与交于不同的两点,,试问:在轴上是否存在点,使得直线与直线的斜率的和为定值?若存在,请求出点的坐标;若不存在,请说明理由.
您最近一年使用:0次
2020-10-08更新
|
1343次组卷
|
9卷引用:吉林省长春外国语学校2021-2022学年高三下学期期初考试数学(文)试题
名校
解题方法
6 . 已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.
(1)求的方程;
(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试证明为定值,并求出该定值.
(1)求的方程;
(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试证明为定值,并求出该定值.
您最近一年使用:0次
2020-04-12更新
|
724次组卷
|
4卷引用:2020届吉林省长春市高三质量监测(二)文科数学试题
名校
解题方法
7 . 如图,曲线是以原点为中心、,为焦点的椭圆的一部分,曲线是以为顶点、为焦点的抛物线的一部分,是曲线和的交点且为钝角,若,.
(1)求曲线和的方程;
(2)过作一条与轴不垂直的直线,分别与曲线,依次交于,,,四点,若为中点,为中点,问是否为定值?若是,求出定值;若不是,说明理由.
(1)求曲线和的方程;
(2)过作一条与轴不垂直的直线,分别与曲线,依次交于,,,四点,若为中点,为中点,问是否为定值?若是,求出定值;若不是,说明理由.
您最近一年使用:0次
2020-06-27更新
|
509次组卷
|
6卷引用:吉林省长春市普通高中2022届高三质量监测(五)数学(文)试题
名校
解题方法
8 . 已知椭圆的离心率为,且上顶点到直线距离为3.
(1)求椭圆的方程;
(2)设直线过点且与椭圆相交于两点,不经过点.证明:直线的斜率与直线的斜率之和为定值.
(1)求椭圆的方程;
(2)设直线过点且与椭圆相交于两点,不经过点.证明:直线的斜率与直线的斜率之和为定值.
您最近一年使用:0次
2020-12-03更新
|
1025次组卷
|
6卷引用:吉林省实验中学2018届高三上学期第五次月考(一模)数学(文)试题
9 . 已知的两个顶点的坐标分别为,,且所在直线的斜率之积等于,记顶点的轨迹为.
(Ⅰ)求顶点的轨迹的方程;
(Ⅱ)若直线与曲线交于两点,点在曲线上,且为的重心(为坐标原点),求证:的面积为定值,并求出该定值.
(Ⅰ)求顶点的轨迹的方程;
(Ⅱ)若直线与曲线交于两点,点在曲线上,且为的重心(为坐标原点),求证:的面积为定值,并求出该定值.
您最近一年使用:0次
2020-02-20更新
|
459次组卷
|
4卷引用:2020届吉林省长春市东北师大附中高三年级上学期第三次摸底数学(理)试题
2020届吉林省长春市东北师大附中高三年级上学期第三次摸底数学(理)试题四川省泸州市泸县第五中学2019-2020学年高三下学期第二次月考数学(理)试题四川省泸州市泸县第五中学2019-2020学年高三下学期第二次月考数学(文)试题(已下线)【新东方】【2021.5.25】【NB】【高二上】【高中数学】【NB00087】
10 . 已知椭圆的离心率,且椭圆过点
(1)求椭圆的标准方程;
(2)设直线与交于、两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
(1)求椭圆的标准方程;
(2)设直线与交于、两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
您最近一年使用:0次
2020-02-18更新
|
4246次组卷
|
21卷引用:2019届吉林省普通高三第三次联合模拟数学(文)试题
2019届吉林省普通高三第三次联合模拟数学(文)试题【市级联考】湖南省郴州市2019届高三第三次质量检测数学(文)试题【市级联考】陕西省榆林市2019届高三第四次普通高等学校招生模拟考试文科数学试题2020届河南省南阳市高三上学期期末数学(理)试题2020届河南省信阳市高三第二次教学质量检测数学(理)试题2019届湖南省长沙市雅礼中学高三下学期5月月考数学(文)试题2019届陕西省榆林市高三第四次模拟考试数学(文)试题(已下线)提升套餐练05-【新题型】2020年新高考数学多选题与热点解答题组合练(已下线)冲刺卷05-决战2020年高考数学冲刺卷(山东专版)2020届河南省开封市第五中学高三第四次教学质量检测数学(理)试卷(已下线)专题31 圆锥曲线中的定点、定值、探索性问题-冲刺2020高考跳出题海之高三数学模拟试题精中选萃(已下线)专题06 解析几何中的定点、定值问题(第五篇)-备战2020年高考数学大题精做之解答题题型全覆盖2020届黑龙江省大庆实验中学高三第一次模拟数学(文)试题河南省信阳市2020届高三上学期第二次教学质量检测(期末)数学(文)试题湖南省邵阳市邵东县第一中学2020-2021学年高三上学期第二次月考数学试题苏教版(2019) 选修第一册 选填专练 第3章 微专题七 高考中圆锥曲线问题(3):证明与探索性问题河南省许平汝联盟2021-2022学年高三下学期4月模拟考试文科数学试题河南省鹤壁市浚县第一中学2021-2022学年高三下学期4月考试文科数学试题湖南省长沙市明德中学2019-2020学年高二上学期期中数学试题江西省信丰中学2021-2022学年高二下学期第一次月考数学(理)B层试题宁夏中卫市中宁县2022-2023学年高二上学期质量测查(期末)数学(理)试题