组卷网 > 章节选题 > 4.5.3 函数模型的应用
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 9 道试题
1 . 小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为万元.在年产量不足8万件时,万元;在年产量不小于8万件时,万元,每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.
(1)写出年利润万元关于年产量x万件的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
2023-11-14更新 | 699次组卷 | 38卷引用:2012-2013学年江苏省沭阳县高二下学期期中调研测试文科数学试卷
2 . 为响应国家提出的“大众创业,万众创新”的号召,小王同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产万件,需另投入流动成本为万元.在年产量不足8万件时,(万元);在年产量不小于8万件时,.每件产品售价为6元.假设小王生产的商品当年全部售完.
(1)写出年利润(万元)关于年产量x(万件)的函数解析式(注:年利润=年销售收入-固定成本-流动成本);
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
2023-10-22更新 | 1104次组卷 | 22卷引用:江苏省无锡市江阴市青阳中学2020-2021学年高一上学期10月阶段性检测数学试题
3 . 华为为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完
(1)求出2023年的利润(万元)关于年产量(千部)的函数解析式(利润=销售额-成本)
(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
2022-11-17更新 | 1734次组卷 | 28卷引用:陕西省汉中市2020-2021学年高一上学期期末数学试题
9-10高二·浙江宁波·期末
解答题-问答题 | 适中(0.65) |
名校
4 . 通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设ft)表示学生注意力随时间t(分钟)的变化规律(ft)越大,表明学生注意力越集中)经过实验分析得知:
(1)讲课开始后第5分钟与讲课开始后第25分钟比较,何时学生的注意力更集中?
(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(3)一道比较难的数学题,需要讲解25分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?
2022-01-12更新 | 298次组卷 | 16卷引用:浙江省宁波市09-10学年高二期末八校联考数学试卷(文科)
智能选题,一键自动生成优质试卷~
5 . 某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:
(天)10202530
(个)110120125120

已知第10天该商品的日销售收入为121元.
(I)求的值;
(II)给出以下二种函数模型:
,②
请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式;
(III)求该商品的日销售收入(元)的最小值.
(函数,在区间上单调递减,在区间上单调递增.性质直接应用.)
6 . 某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:月份第)天的单件销售价格(单位:元,第天的销售量(单位:件)为常数),且第天该商品的销售收入为元(销售收入销售价格销售量).
(1)求m的值;
(2)该月第几天的销售收入最高?最高为多少?
填空题-双空题 | 适中(0.65) |
真题 名校
7 . 李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________
2019-06-10更新 | 13002次组卷 | 136卷引用:陕西省宝鸡市金台区2019-2020学年高二上学期期中数学试题
2011·河南三门峡·一模
8 . 提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
2019-01-30更新 | 4525次组卷 | 92卷引用:2012届陕西省师大附中高三第一学期期中考试文科数学
9 . 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
2018-09-20更新 | 6060次组卷 | 60卷引用:陕西省宝鸡市渭滨中学2020-2021学年高三上学期月考(三)理科数学试题
共计 平均难度:一般