组卷网 > 章节选题 > 选修1-2
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 112 道试题
填空题-单空题 | 容易(0.94) |
1 . 某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则:
(i)若开启3号,则必须同时开启4号并且关闭2号;
(ii)若开启2号或4号,则关闭1号;
(iii)禁止同时关闭5号和1号.
现要开启3号,则同时开启的另两个阀门是__________
2019-03-30更新 | 421次组卷 | 1卷引用:【校级联考】吉林省吉林市普通中学2019届高三第三次调研测试理科数学试题
2 . 2018年11月15日,我市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:.把年龄落在内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为.

(1)求图中的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值
(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有的把握认为“中老年人”比“青少年人”更加关注此活动?
关注不关注合计
青少年人15
中老年人
合计5050100
0.0500.0100.001
3.8416.63510.828
附参考公式:,其中.
3 . 欧拉公式为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,表示的复数位于复平面内
A.第一象限B.第二象限C.第三象限D.第四象限
2019·陕西·高考模拟
单选题 | 较难(0.4) |
名校
4 . 一布袋中装有个小球,甲,乙两个同学轮流且不放回的抓球,每次最少抓一个球,最多抓三个球,规定:由乙先抓,且谁抓到最后一个球谁赢,那么以下推断中正确的是
A.若,则乙有必赢的策略B.若,则甲有必赢的策略
C.若,则甲有必赢的策略D.若,则乙有必赢的策略
2019-03-20更新 | 840次组卷 | 8卷引用:吉林省舒兰市实验中学2019-2020学年高二下学期期中考试数学(文)试题
填空题-单空题 | 适中(0.65) |
名校
5 . 学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“两项作品未获得一等奖”;丁说:“是作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___
2019-07-07更新 | 576次组卷 | 57卷引用:内蒙古包头市第九中学2016-2017学年高二下学期期中考试数学(文)试题
6 . “中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

男性

女性

总计

反感

10

不反感

8

总计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列及均值.
附:.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

2018-10-07更新 | 1207次组卷 | 5卷引用:【全国百强校】吉林省吉林市吉化第一高级中学2018-2019学年高二下学期期中考试数学试题
9-10高二下·福建·期中
真题 名校
7 . 设,“”是“复数是纯虚数”的
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
2019-01-30更新 | 5592次组卷 | 52卷引用:2014-2015学年吉林省吉林市五十五中高二下学期期中考试文科数学卷
8 . 市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

合计

男性市民

女性市民

合计

(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.
附:,其中.

解答题-问答题 | 容易(0.94) |
名校
9 . 学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:

损坏餐椅数

未损坏餐椅数

总 计

学习雷锋精神前

50

150

200

学习雷锋精神后

30

170

200

   

80

320

400

(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?
参考公式:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

10 .
等差数列的前项和为
(1)求以及
(2)设,证明数列中不存在不同的三项成等比数列
2018-05-07更新 | 545次组卷 | 1卷引用:【全国校级联考】吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2017-2018学年高二下学期期中考试数学(文)试题
首页4 5 6 7 8 9 10 11 末页
跳转: 确定
共计 平均难度:一般