组卷网 > 知识点选题 > 子集、真子集
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 9 道试题
1 . 已知,记,用表示有限集合X的元素个数.
(1)若,分别讨论时,集合T的情况;
(2)若,求的最大值;
(3)若,则对于任意的A,是否都存在T,使得?说明理由.
2023-08-08更新 | 417次组卷 | 1卷引用:北京交通大学附属中学2022-2023学年高二上学期期中考试数学试题
2 . 设A是正整数集的一个非空子集,如果对于任意,都有,则称A为自邻集.记集合的所有子集中的自邻集的个数为.
(1)直接写出的所有自邻集;
(2)若为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
(3)若,求证:.
3 . 设为非空集合,定义(其中表示有序对),称的任意非空子集上的一个关系.例如时,都是上的关系.设为非空集合上的关系.给出如下定义:①(自反性)若对任意,有,则称上是自反的;②(对称性)若对任意,有,则称上是对称的;③(传递性)若对任意,有,则称上是传递的.如果上关系同时满足上述3条性质,则称上的等价关系.任给集合,定义.
(1)若,问:上关系有多少个?上等价关系有多少个?(不必说明理由)
(2)若集合个元素的非空子集两两交集为空集,且,求证:上的等价关系.
(3)若集合个元素,问:对上的任意等价关系,是否存在的非空子集,其中任意两个交集为空集,且,使得?请判断并说明理由.
2022-10-13更新 | 631次组卷 | 5卷引用:上海市七宝中学2022-2023学年高一上学期10月月考数学试题
4 . 设自然数,若由n个不同的正整数,…,构成的集合满足:对集合S的任何两个不同的非空子集ABA中所有元素之和与B中所有元素之和均不相等,则称集合S具有性质P
(1)试分别判断在集合是否具有性质P,不必说明理由;
(2)已知集合具有性质P
①记,求证:对于任意正整数,都有
②令,求证:
(3)在(2)的条件下,求的最大值.
2022-03-25更新 | 350次组卷 | 3卷引用:上海市民办南模中学2022届高三下学期3月月考数学试题
智能选题,一键自动生成优质试卷~
5 . 已知,对于有限集,令表示集合中元素的个数.例如:当时,
(1)当时,请直接写出集合的子集的个数;
(2)当时,都是集合的子集(可以相同),并且.求满足条件的有序集合对的个数;
(3)假设存在集合具有以下性质:将1,1,2,2,··,.这个整数按某种次序排成一列,使得在这个序列中,对于任意之间恰好排列个整数.证明:是4的倍数.
2022-02-16更新 | 591次组卷 | 1卷引用:北京市一零一中学2021-2022学年高二上学期期末考试数学试题
6 . 设为正整数,集合.对于集合中的任意元素,定义.
(1)当时,若,直接写出所有使同时成立的的元素
(2)当时,设的子集,且满足:对于中的任意两个不同元素.求集合中元素个数的最大值;
(3)给定不小于2的,设的子集,且满足:对于中的任意两个不同的元素,写出一个集合,使其元素个数最多,并说明理由.
2022-01-10更新 | 320次组卷 | 1卷引用:北京市十一学校2022届高三1月月考数学试题
7 . 含有有限个元素的数集,定义“元素和”如下:把集合中的各数相加;定义“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数.例如{4,6,9}的元素和是4+6+9=19;交替和是9-6+4=7;而{5}的元素和与交替和都是5.
(1)写出集合{1,2,3}的所有非空子集的交替和的总和;
(2)已知集合,根据提示解决问题.
①求集合所有非空子集的元素和的总和;
提示:方法1:,先求出在集合的非空子集中一共出现多少次,进而可求出集合所有非空子集的元素和的总和;方法2:如果我们知道了集合{1,2,3,4,5}的所有非空子集的元素和的总和为,可以用表示出的非空子集的元素和的总和,递推可求出集合所有非空子集的元素和的总和.
②求集合所有非空子集的交替和的总和.
2021-10-12更新 | 770次组卷 | 4卷引用:第01讲 集合的概念及基本关系(3大考点10种解题方法)-2022-2023学年高一数学考试满分全攻略(人教A版2019必修第一册)
8 . 设集合,集合,如果对于任意元素,都有,则称集合的自邻集.记为集合的所有自邻集中最大元素为的集合的个数.
(1)直接判断集合是否为的自邻集;
(2)比较的大小,并说明理由;
(3)当时,求证:.
2021-07-15更新 | 895次组卷 | 7卷引用:第1章 集合与常用逻辑用语(基础、典型、新文化、压轴)分类专项训练-2022-2023学年高一数学考试满分全攻略(人教A版2019必修第一册)
9 . 已知集合是集合的一个含有个元素的子集.
(Ⅰ)当时,

(i)写出方程的解
(ii)若方程至少有三组不同的解,写出的所有可能取值.
(Ⅱ)证明:对任意一个,存在正整数使得方程至少有三组不同的解.
共计 平均难度:一般