组卷网 > 知识点选题 > 求旋转体的体积
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 15 道试题
1 . 巴普士(约公元3~4世纪),古希腊亚历山大学派著名几何学家.生前有大量的著作,但大部分遗失在历史长河中,仅有《数学汇编》保存下来.《数学汇编》一共8卷,在《数学汇编》第3卷中记载着这样一个定理:“如果在同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于该闭合图形的面积与该闭合图形的重心旋转所得周长的积”,表示平面闭合图形绕旋转轴旋转所得几何体的体积,S表示闭合图形的面积,l表示重心绕旋转轴旋转一周的周长).已知在梯形ABCD中,,利用上述定理可求得梯形ABCD的重心G到点B的距离为(       
A.B.C.D.
2 . 祖暅原理也称祖氏原理,是一个涉及求几何体体积的著名数学命题,公元656年,唐代李淳风注《九章算术》时提到祖暅的开立圆术,祖暅在求球体积时,使用一个原理,“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个同高的几何体,如在等高处的截面面积相等,则体积相等,更详细点说就是,夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积相等,那么这两个几何体的体积相等,上述原理在中国被称为祖暅原理,国外同一般称之为卡瓦列利原理,已知将双曲线与它的渐近线以及直线围成的图形绕轴旋转一周得到一个旋转体I,将双曲线与直线围成的图形绕轴旋转一周得到一个旋转体II,则关于这两个旋转体叙述正确的是(       
A.由垂直于轴的平面截旋转体II,得到的截面为圆面
B.旋转体II的体积为
C.将旋转体I放入球中,则球的表面积的最小值为
D.旋转体I的体积为
2023-02-04更新 | 422次组卷 | 2卷引用:山西省晋中市晋中新格伦双语学校等2校2022-2023学年高三上学期12月月考文数试题
3 . 古希腊亚历山大时期的数学家帕普斯在《数学汇编》第3卷中记载着一个确定重心的定理:“如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以该闭合图形的重心旋转所得周长的积”,即表示平面图形绕旋转轴旋转的体积,表示平面图形的面积,表示重心绕旋转轴旋转一周的周长).如图直角梯形,已知,则重心的距离为(       
A.B.C.3D.2
4 . 祖暅原理也称祖氏原理,是一个涉及求几何体体积的著名数学命题.公元656年,唐代李淳风注《九章算术》时提到祖暅的开立圆术,祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积相等,那么这两个几何体的体积相等,上述原理在中国被称为祖暅原理,国外则一般称之为卡瓦列利原理,已知将双曲线与它的渐近线以及直线围成的图形绕x轴旋转一周得到一个旋转体I,将双曲线C与直线围成的图形绕y轴旋转一周得到一个旋转体II,则关于这两个旋转体叙述正确的是(       

①由垂直于y轴的平面截旋转体II,得到的截面为圆面
②旋转体II的体积为
③将旋转体I放入球中,则球的表面积的最小值为
④旋转体I的体积为
A.①②B.③④C.①③④D.①②③
2022-12-30更新 | 422次组卷 | 2卷引用:河南省百师联盟2023届高三一轮复习联考(四)全国卷理科数学试题
智能选题,一键自动生成优质试卷~
5 . 祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.由曲线围成的图形绕y轴旋转一周所得旋转体的体积为,满足的点组成的图形绕y轴旋转一周所得旋转体的体积为,则满足的关系式为(       
A.B.C.D.
2022-10-28更新 | 401次组卷 | 1卷引用:广东省惠州市2023届高三上学期第二次调研数学试题
6 . 公元年,唐代李淳风注《九章》时提到祖暅的开立圆术.祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”,意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.上述原理在中国被称为祖暅原理,我们可以应用此原理将一些复杂几何体转化为常见几何体的组合体来计算体积.如图,将双曲线与直线所围成的平面图形绕双曲线的实轴所在直线旋转一周得到几何体,下列平面图形绕其对称轴(虚线所示)旋转一周所得几何体与的体积相同的是(       

A.图①,长为、宽为的矩形的两端去掉两个弦长为、半径为的弓形
B.图②,长为、宽为的矩形的两端补上两个弦长为、半径为的弓形
C.图③,长为、宽为的矩形的两端去掉两个底边长为、腰长为的等腰三角形
D.图④,长为、宽为的矩形的两端补上两个底边长为、腰长为的等腰三角形
2022-09-23更新 | 1093次组卷 | 4卷引用:重庆市南开中学校2023届高三上学期9月月考数学试题
7 . 祖暅是我国南北朝时期伟大的数学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.现已知直线与双曲线及其渐近线围成的平面图形如图所示.若将图形被直线所截得的两条线段绕轴旋转一周,则形成的旋转面的面积______;若将图形轴旋转一周,则形成的旋转体的体积______.
2022-09-03更新 | 702次组卷 | 3卷引用:湖北省武汉市第十九中学2023届高三上学期11月线上月考数学试题
8 . 祖暅(公元5-6世纪),祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为,高皆为a的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面上.以平行于平面的平面于距平面任意高d处可横截得到两截面,可以证明总成立.据此,短轴长为,长轴为的椭球体的体积是(       
A.B.C.D.
9 . 我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.意思是:夹在两个平行平面之间的两个等高的几何体被平行于这两个面的平面去截,若截面积相等,则两个几何体的体积相等,这个定理的推广是:夹在两个平行平面间的几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为,则两个几何体的体积比也为.已知线段长为4,直线过点且与垂直,以为圆心,以1为半径的圆绕旋转一周,得到环体;以分别为上下底面的圆心,以1为上下底面半径的圆柱体;过且与垂直的平面为,平面,且距离为,若平面截圆柱体所得截面面积为,平面截环体所得截面面积为,则________,环体体积为_________.
2020-12-14更新 | 572次组卷 | 8卷引用:安徽省池州市东至县2020-2021学年高三上学期12月大联考数学(文)试题
10 . 我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即.现将椭圆轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于(       

A.B.C.D.
共计 平均难度:一般