1 . 对于在区间上有意义的两个函数与,如果对任意的,均有,则称与在上是接近的,否则称与在上是非接近的.现在有两个函数与,现给定区间.
(1)若,判断与是否在给定区间上接近;
(2)若与在给定区间上都有意义,求的取值的集合;
(3)在(2)的条件下,是否存在,使得与在给定区间上是接近的;若存在,求的取值范围;若不存在,请说明理由.
(1)若,判断与是否在给定区间上接近;
(2)若与在给定区间上都有意义,求的取值的集合;
(3)在(2)的条件下,是否存在,使得与在给定区间上是接近的;若存在,求的取值范围;若不存在,请说明理由.
您最近一年使用:0次
名校
解题方法
2 . 已知函数,其中为常数.
(1)当时,解不等式的解集;
(2)当时,写出函数的单调区间;
(3)若在上存在个不同的实数,,使得,求实数的取值范围.
(1)当时,解不等式的解集;
(2)当时,写出函数的单调区间;
(3)若在上存在个不同的实数,,使得,求实数的取值范围.
您最近一年使用:0次
2023-11-17更新
|
434次组卷
|
2卷引用:湖北省十堰市示范高中教联体测评联盟2023-2024学年高一上学期11月联考数学试题
名校
3 . 已知函数且
(1)若方程的一个实数根为2,求的值;
(2)当且时,求不等式的解集;
(3)若函数在区间上有零点,求的取值范围.
(1)若方程的一个实数根为2,求的值;
(2)当且时,求不等式的解集;
(3)若函数在区间上有零点,求的取值范围.
您最近一年使用:0次
2019-11-30更新
|
945次组卷
|
6卷引用:湖北省荆州市沙市中学2019-2020学年高一上学期期中数学试题