1 . 已知函数在点处的切线和直线垂直.
求a的值;
对于任意的,证明:;
若有两个实根,,求证:.
求a的值;
对于任意的,证明:;
若有两个实根,,求证:.
您最近一年使用:0次
名校
2 . 设函数,,曲线在点处的切线方程为.
(1)求的值;
(2)求证:方程仅有一个实根;
(3)对任意,有,求正数的取值范围.
(1)求的值;
(2)求证:方程仅有一个实根;
(3)对任意,有,求正数的取值范围.
您最近一年使用:0次
解题方法
3 . 已知函数,其中为自然对数的底数.
(1)当时,判断函数在区间上的单调性;
(2)令,若函数在区间上存在极值,求实数的取值范围;
(3)求证:当时,.
(1)当时,判断函数在区间上的单调性;
(2)令,若函数在区间上存在极值,求实数的取值范围;
(3)求证:当时,.
您最近一年使用:0次
4 . 如图所示,已知椭圆:与直线:.点在直线上,由点引椭圆的两条切线、,A、B为切点,是坐标原点.
(1)若点为直线与轴的交点,求的面积;
(2)若,为垂足,求证:存在定点,使得为定值.(注:椭圆在其上一点处的切线方程为)
(1)若点为直线与轴的交点,求的面积;
(2)若,为垂足,求证:存在定点,使得为定值.(注:椭圆在其上一点处的切线方程为)
您最近一年使用:0次
解题方法
5 . 已知椭圆的上顶点为,左焦点为,直线与圆相切.
(1)求椭圆的标准方程;
(2)若不过点的动直线与椭圆相交于两点,若,求证:直线过定点,并求出该定点坐标.
(1)求椭圆的标准方程;
(2)若不过点的动直线与椭圆相交于两点,若,求证:直线过定点,并求出该定点坐标.
您最近一年使用:0次
6 . 已知函数.
(1)讨论函数的单调性;
(2)若函数有两个零点和,求证:在处的切线斜率恒为正数.
(1)讨论函数的单调性;
(2)若函数有两个零点和,求证:在处的切线斜率恒为正数.
您最近一年使用:0次
名校
解题方法
7 . 已知椭圆的左右顶点为A、B,右焦点为F,C为短轴一端点,的面积为,离心率为.
(1)求椭圆的标准方程:(2)过点F的直线交椭圆于M,N两点(异于A,B),直线AM与BN的交点为Q.
①求证:Q点在定直线上;
②求证:射线FQ平分∠MFB.
您最近一年使用:0次
2022-12-15更新
|
1254次组卷
|
7卷引用:山东省德州市第一中学2022-2023学年高二上学期1月期末数学试题
山东省德州市第一中学2022-2023学年高二上学期1月期末数学试题福建省厦门外国语学校石狮分校2022-2023学年高二上学期期中考试数学试题新疆生产建设兵团第六师五家渠高级中学2022-2023学年高二下学期开学考试数学试题(已下线)第五篇 向量与几何 专题11 圆锥曲线中的蝴蝶定理 微点1 圆锥曲线中的蝴蝶定理陕西省西安市西航一中2022-2023学年高二上学期期中数学试题(已下线)专题14 圆锥曲线中的蝴蝶模型(高三压轴题)(已下线)专题14 圆锥曲线中的蝴蝶模型(高三压轴题)【讲】
名校
8 . 设函数.
(1)讨论的单调性;
(2)若,求证:.
(1)讨论的单调性;
(2)若,求证:.
您最近一年使用:0次
2022-05-26更新
|
1033次组卷
|
7卷引用:山东省德州市禹城市综合高中2023-2024学年高三上学期10月月考数学试题
名校
解题方法
9 . 设函数,,.
(1)时,求在处切线方程;
(2)若在y轴右侧,函数图象恒不在函数的图象下方,求实数a的取值范围;
(3)证明:当时,.
(1)时,求在处切线方程;
(2)若在y轴右侧,函数图象恒不在函数的图象下方,求实数a的取值范围;
(3)证明:当时,.
您最近一年使用:0次
2023-06-25更新
|
304次组卷
|
3卷引用:山东省德州市第一中学2022-2023学年高二下学期6月月考数学试题
名校
10 . 已知函数.
(1)讨论的单调性;
(2)当时,证明:不等式恒成立.
(1)讨论的单调性;
(2)当时,证明:不等式恒成立.
您最近一年使用:0次
2023-06-20更新
|
749次组卷
|
6卷引用:山东省德州市第一中学2022-2023学年高二下学期期末数学试题