组卷网 > 章节选题 > 选修4-2
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3 道试题
1 . 在平面直角坐标系中,利用公式①(其中为常数),将点变换为点的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由组成的正方形数表唯一确定,我们将称为二阶矩阵,矩阵通常用大写英文字母,…表示.

(1)在平面直角坐标系中,将点绕原点按逆时针旋转得到点(到原点距离不变),求点的坐标;
(2)如图,在平面直角坐标系中,将点绕原点按逆时针旋转角得到点(到原点距离不变),求坐标变换公式及对应的二阶矩阵;
(3)向量(称为行向量形式),也可以写成,这种形式的向量称为列向量,线性变换坐标公式①可以表示为:,则称是二阶矩阵与向量的乘积,设是一个二阶矩阵,是平面上的任意两个向量,求证:
2024-04-18更新 | 619次组卷 | 2卷引用:模块五 专题5 全真拔高模拟1(高一人教B版期中)
2 . 设数阵,其中.设,其中.定义变换为“对于数阵的每一行,若其中有,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”().表示“将经过变换得到,再将经过变换得到 ,以此类推,最后将经过变换得到”,记数阵中四个数的和为
(1)若,写出经过变换后得到的数阵
(2)若,求的值;
(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过
3 . 定义,则       
A.B.C.D.
2017-06-23更新 | 416次组卷 | 1卷引用:江西省南昌市第二中学2016-2017学年高一下学期第三次月考数学试题
共计 平均难度:一般