组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 844 道试题
1 . 已知椭圆 的离心率为,长轴的右端点为
(1)求的方程;
(2)直线与椭圆分别相交于两点,且,点不在直线上.
①试证明直线过一定点,并求出此定点;
②从点垂足为,点,写出的最小值(结论不要求证明).
2 . 已知椭圆过点,且离心率为.设为椭圆的左、右顶点,为椭圆上异于的一点,直线分别与直线相交于两点,且直线与椭圆交于另一点
(1)求椭圆的标准方程;
(2)求证:直线的斜率之积为定值;
(3)判断三点是否共线:并证明你的结论.
3 . 用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.由平行光线形成的投影叫做平行投影,由点光源发出的光线形成的投影叫做中心投影.投影线垂直于投影面产生的平行投影叫做正投影,投影线不垂直于投影而产生的平行投影叫做斜投影.物体投影的形状、大小与它相对于投影面的位置和角度有关.如图所示,已知平行四边形在平面内的平行投影是四边形.




(1)若平行四边形平行于投影面(如图),求证:四边形是平行四边形;
(2)在图中作出平面与平面的交线(保留作图痕迹,不需要写出过程);
(3)如图,已知四边形和平行四边形的面积分别为,平面与平面的交线是直线,且这个平行投影是正投影.设二面角的平面角为为锐角),猜想并写出角的余弦值(用表示),再给出证明.
2022-07-19更新 | 871次组卷 | 3卷引用:北京市东城区2021-2022学年高一下学期期末数学试题
4 . 设A为非空集合,令,则的任意子集R都叫做从AA的一个关系(Relation),简称A上的关系.例如时,{0,2},{(0,0),(2,1)}等都是A上的关系.设R为非空集合A上的关系.给出如下定义:
①(自反性)若,有,则称RA上是自反的;
②(对称性)若,有,则称RA上是对称的;
③(传递性)若,有,则称RA上是传递的;
如果R同时满足这3条性质,则称RA上的等价关系.
(1)已知,按要求填空:
①用列举法写出______________________;
A上的关系有____________个(用数值做答);
③用列举法写出A上的所有等价关系:{(0,0),(1,1),(2,2)},{(0,0),(1,1),(2,2),(0,1),(1,0)},{(0,0),(1,1),(2,2),(0,2),(2,0)},_______________,_______________,共5个.
(2)设是某个非空集合A上的关系,证明:
①若是自反的和对称的,则也是自反的和对称的;
②若是传递的,则也是传递的.
(3)若给定的集合An个元素(),,...,A的非空子集,满足且两两交集为空集.求证:A上的等价关系.
2022-07-09更新 | 489次组卷 | 1卷引用:北京市第八中学2021-2022学年高二下学期期末练习数学试题
5 . 设函数的定义域为.若存在常数,使得对于任意成立,则称函数具有性质.
(1)判断函数具有性质?(结论不要求证明)
(2)若函数具有性质,且其对应的.已知当时,,求函数在区间上的最大值;
(3)若函数具有性质,且直线为其图像的一条对称轴,证明:为周期函数.
6 . 已知函数.
(1)求证:当时,
(2)设斜率为的直线与曲线交于两点,证明:.
2021-08-04更新 | 665次组卷 | 3卷引用:北京市大兴区2020-2021学年高二下学期期末数学试题
解答题-证明题 | 较难(0.4) |
名校
7 . 设函数的定义域为R.若存在常数,对于任意成立,则称函数具有性质.记P为满足性质的所有函数的集合.
I)判断函数是否属于集合P?(结论不要求证明)
II)若函数,证明:;
III)记二次函数的全体为集合,证明:.
解答题-证明题 | 较难(0.4) |
名校
8 . 设数集满足:①任意,有;②任意,有,则称数集具有性质.
(1)判断数集是否具有性质,并说明理由;
(2)若数集具有性质.
(i)当时,求证:是等差数列;
(ii)当不是等差数列时,写出的最大值.(结论不需要证明)
9 . 已知M是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足.
(1)判断函数是集合M中的元素,并说明理由;
(2)集合M中的元素具有下面的性质:若的定义域为D,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(3)对任意,且,求证:对于定义域中任意的,当,且时,.
2020-11-06更新 | 372次组卷 | 1卷引用:北京市首都师大附中2019-2020学年高二下学期数学期末考试试题
解答题-证明题 | 较难(0.4) |
名校
10 . 若有穷数列满足且对任意的至少有一个是数列中的项,则称数列具有性质
(1)判断数列1,2,4,8是否具有性质P,并说明理由;
(2)设项数为的数列具有性质,求证:
(3)若项数为的数列具有性质,写出一个当时,不是等差数列的例子,并证明当时,数列是等差数列
2020-12-25更新 | 586次组卷 | 6卷引用:北京市第五十五中学2022-2023年高二下学期3月调研数学试题
共计 平均难度:一般