解题方法
1 . 已知,是椭圆T.上的两点,且A点位于第一象限.过A作x轴的垂线,垂足为点C,点D满足,延长交T于点.
(1)设直线,的斜率分别为,.
(i)求证:;
(ii)证明:是直角三角形;
(2)求的面积的最大值.
(1)设直线,的斜率分别为,.
(i)求证:;
(ii)证明:是直角三角形;
(2)求的面积的最大值.
您最近一年使用:0次
2020·全国·模拟预测
2 . 如图,已知是抛物线上的任意一点,,,,连接并延长交抛物线于另一点,连接并延长交抛物线于另一点,连接并延长交抛物线于另一点,设直线与的交点为.
(1)求证:直线过点;
(2)设和四边形的面积分别为,,当变化时,是否为定值?若是,求出此定值,并说明理由;若不是,求出关于的表达式.
(1)求证:直线过点;
(2)设和四边形的面积分别为,,当变化时,是否为定值?若是,求出此定值,并说明理由;若不是,求出关于的表达式.
您最近一年使用:0次
名校
解题方法
3 . 已知数列是等比数列,,且成等差数列.数列满足:.
(1)求数列和的通项公式;
(2)求证:.
(1)求数列和的通项公式;
(2)求证:.
您最近一年使用:0次
2020-12-01更新
|
911次组卷
|
4卷引用:2020届浙江省绍兴市高三下学期4月第一次高考模拟考试数学试题
2020届浙江省绍兴市高三下学期4月第一次高考模拟考试数学试题(已下线)专题09 数列与数学归纳法-2021年浙江省高考数学命题规律大揭秘【学科网名师堂】(已下线)专题20 数列综合-2020年高考数学母题题源全揭秘(浙江专版)山东省德州市第一中学2023-2024学年高二下学期3月月考数学试题
4 . 设数列的前项和为,且满足,.
(1)求(用表示);
(2)求证:当时,不等式成立.
(1)求(用表示);
(2)求证:当时,不等式成立.
您最近一年使用:0次
5 . 设函数.
(1)当时,求函数的单调区间;
(2)当时,求证:
(1)当时,求函数的单调区间;
(2)当时,求证:
您最近一年使用:0次
2020-09-21更新
|
375次组卷
|
3卷引用:【省级联考】山西省2019届高三考前适应性训练二(二模)文科数学试题
解题方法
6 . 已知椭圆的左、右焦点分别为,,且,是椭圆上一点.
(1)求椭圆方程的离心率
(2)若为椭圆上异于顶点的任意一点,,分别为椭圆的右顶点和上顶点.直线与轴交于点,直线与轴交于点,求证:为定值.
(1)求椭圆方程的离心率
(2)若为椭圆上异于顶点的任意一点,,分别为椭圆的右顶点和上顶点.直线与轴交于点,直线与轴交于点,求证:为定值.
您最近一年使用:0次
7 . 已知函数.
(1)当时,求函数的单调区间;
(2)若时,求证:对任意的,有.
(1)当时,求函数的单调区间;
(2)若时,求证:对任意的,有.
您最近一年使用:0次
解题方法
8 . 已知函数,.
(1)求在点处的切线;
(2)研究函数的单调性,并求出极值;
(3)求证:.
(1)求在点处的切线;
(2)研究函数的单调性,并求出极值;
(3)求证:.
您最近一年使用:0次
解题方法
9 . 已知椭圆的长轴长是短轴长的2倍,A,B分别为椭圆的左顶点和下顶点,且的面积为1.
(1)求椭圆C的方程;
(2)设点M为椭圆上位于第一象限内一动点,直线与轴交于点C,直线与轴交于点D,求证:四边形的面积为定值.
(1)求椭圆C的方程;
(2)设点M为椭圆上位于第一象限内一动点,直线与轴交于点C,直线与轴交于点D,求证:四边形的面积为定值.
您最近一年使用:0次
2020-03-16更新
|
259次组卷
|
2卷引用:2020届湖北省宜昌市第二中学高三上学期10月月考数学(文)试题
解题方法
10 . 如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.
(1)求椭圆的标准方程;
(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.
(1)求椭圆的标准方程;
(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.
您最近一年使用:0次