组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 77 道试题
1 . 已知点是圆的动点,过轴,为垂足,且,记动点的轨迹分别为
(1)证明:有相同的离心率;
(2)若直线与曲线交于,与曲线交于,与圆交于,当时,试比较的大小.
2 . 已知抛物线的焦点为,准线为,点上(在第一象限),点上,,(       
A.若,则B.若,则
C.则的面积最小值为D.则的面积大于
2024-02-28更新 | 1536次组卷 | 5卷引用:浙江省金华市2023-2024学年高三上学期2月期末考试数学试题
3 . 已知分别是双曲线的左,右顶点,,点到其中一条渐近线的距离为
(1)求双曲线C的方程:
(2)过点的直线lC交于MN两点(异于两点),直线OP与直线交于点Q.若直线的斜率分别为,试问是否为定值?若是,求出此定值;否不是,请说明理由.
2024-02-14更新 | 570次组卷 | 2卷引用:浙江省嘉兴市2024届高三上学期期末检测数学试题
4 . 已知函数
(1)若时,在其定义域内不是单调函数,求a的取值范围;
(2)若时,函数有两个极值点,求证:
2024-02-14更新 | 692次组卷 | 2卷引用:浙江省嘉兴市2024届高三上学期期末检测数学试题
6 . 已知双曲线的左右顶点分别为,点满足,点为双曲线右支上任意一点(异于点),以为直径的圆交直线于点,直线与直线交于点.若点的横坐标等于该圆的半径,则该双曲线的离心率是__________.
2024-01-31更新 | 642次组卷 | 3卷引用:浙江省湖州市2024届高三上学期期末数学试题
7 . 已知,则(       
A.B.C.D.
2024-01-29更新 | 1056次组卷 | 3卷引用:浙江省宁波市宁波九校2023-2024学年高三上学期1月期末数学试题
8 . 在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C上的曲线段,其弧长为,当动点从A沿曲线段运动到B点时,A点的切线也随着转动到B点的切线,记这两条切线之间的夹角为(它等于的倾斜角与的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义为曲线段的平均曲率;显然当B越接近A,即越小,K就越能精确刻画曲线C在点A处的弯曲程度,因此定义(若极限存在)为曲线C在点A处的曲率.(其中y',y''分别表示在点A处的一阶、二阶导数)

(1)求单位圆上圆心角为60°的圆弧的平均曲率;
(2)求椭圆处的曲率;
(3)定义为曲线的“柯西曲率”.已知在曲线上存在两点,且PQ处的“柯西曲率”相同,求的取值范围.
2024-01-29更新 | 3806次组卷 | 12卷引用:浙江省宁波市镇海中学2024届高三上学期期末数学试题
解答题-证明题 | 困难(0.15) |
名校
9 . 设数阵,其中.设,其中.定义变换为“对于数阵的每一行,若其中有,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”表示“将经过变换得到,再将经过变换得到以此类推,最后将经过变换得到.记数阵中四个数的和为
(1)若,写出经过变换后得到的数阵,并求的值;
(2)若,求的所有可能取值的和;
(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过
2023-12-20更新 | 2253次组卷 | 7卷引用:浙江省温州市第五十一中学2024届高三上学期期末数学试题
10 . 已知函数在定义域内有两个不同的零点,.
(1)求证:
(2)已知,若存在,不等式对任意的总成立,求的取值范围.
2023-12-11更新 | 469次组卷 | 3卷引用:浙江省湖州市天略高中2021-2022学年高三上学期期末模拟数学试题
共计 平均难度:一般