组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3513 道试题
1 . 在计算机科学中,维数组是一种基础而重要的数据结构,它在各种编程语言中被广泛使用.对于维数组,定义的差为之间的距离为
(1)若维数组,证明:
(2)证明:对任意的数组,有
(3)设集合,若集合中有维数组,记中所有两元素间的距离的平均值为,证明:
昨日更新 | 94次组卷 | 1卷引用:海南省海南中学2024届高三第一次模拟数学试题
2 . 如图,是边长为2的正方形纸片,沿某动直线为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点都落在边上,记为;折痕交于点,点满足关系式.以点为坐标原点建立坐标系,若曲线是由点的轨迹及其关于边对称的曲线组成的,等腰梯形分别与曲线切于点PQ,且x轴上.则梯形的面积最小值为(       

A.6B.C.D.
昨日更新 | 230次组卷 | 1卷引用:江苏省苏州市部分高中2024届高三下学期4月适应性检测(高考指导卷)数学试题
3 . 对于数列,定义“变换”:将数列变换成数列,其中,且.这种“变换”记作,继续对数列进行“变换”,得到数列,依此类推,当得到的数列各项均为0时变换结束.
(1)写出数列,经过6次“变换”后得到的数列;
(2)若不全相等,判断数列经过不断的“变换”是否会结束,并说明理由;
(3)设数列经过次“变换”得到的数列各项之和最小,求的最小值.
昨日更新 | 148次组卷 | 1卷引用:江西省上饶市2024届高三第二次高考模拟考试数学试卷
4 . 对于数列,若存在,使得对任意,总有,则称为“有界变差数列”.
(1)若各项均为正数的等比数列为有界变差数列,求其公比q的取值范围;
(2)若数列满足,且,证明:是有界变差数列;
(3)若均为有界变差数列,且,证明:是有界变差数列.
昨日更新 | 83次组卷 | 1卷引用:山西省部分学校2023-2024学年高三年级阶段性测试(定位)数学试题
5 . 已知各项均不为0的数列满足是正整数),,定义函数是自然对数的底数.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)记函数,其中.
(i)证明:对任意
(ii)数列满足,设为数列的前项和.数列的极限的严格定义为:若存在一个常数,使得对任意给定的正实数(不论它多么小),总存在正整数m满足:当时,恒有成立,则称为数列的极限.试根据以上定义求出数列的极限.
昨日更新 | 92次组卷 | 1卷引用:上海市徐汇区2024届高三学习能力诊断数学试卷
6 . 已知椭圆的长轴为4,直线与圆相切于点,与相交于两点,且.
(1)记的离心率为,证明:
(2)若轴右侧的点上,且轴,是圆的两条切线,切点分别为上方),求的值.
7日内更新 | 163次组卷 | 1卷引用:河南省焦作市2023-2024学年高三第三次模拟考试(暨青铜鸣大联考)数学试题
7 . 设是各项为正的无穷数列,若对于d:为非零常数),则称数列为等方差数列.那么(     
A.若是等方差数列,则是等差数列
B.数列为等方差数列
C.若是等方差数列,则数列中存在小于1的项
D.若是等方差数列,则存在正整数n,使得
7日内更新 | 156次组卷 | 1卷引用:重庆市第八中学2024届高三下学期高考强化训练一数学试题
8 . 设函数.
(1)求函数的单调区间;
(2)若总存在两条直线和曲线都相切,求的取值范围.
7日内更新 | 109次组卷 | 1卷引用:四川省泸州市2024届高三第三次教学质量诊断性考试数学(文科)试题
9 . 已知抛物线C)的准线与圆O相切.
(1)求C的方程;
(2)设点PC上的一点,点ABC的准线上两个不同的点,且圆O的内切圆.
①若,求点P的横坐标;
②求面积的最小值.
7日内更新 | 219次组卷 | 1卷引用:山西省晋城市2024届高三第二次模拟考试数学试题
10 . 已知曲线是坐标原点, 过点的直线与曲线交于两点.
(1)当轴垂直时,求的面积;
(2)过圆上任意一点作直线,分别与曲线切于两 点,求证:

   

(3)过点的直线与双曲线交于两点(不与轴重合).记直线的斜率为,直线斜率为, 当时,求证:都是定值.

   

7日内更新 | 138次组卷 | 1卷引用:上海市奉贤区2024届高三第二次模拟考试数学试题
共计 平均难度:一般