组卷网 > 知识点选题 > 锥体体积的有关计算
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 369 道试题
2024·全国·模拟预测
1 . 现将一个高为4,体积为的圆柱削成一个空间几何体ABCD,其中棱ABCD分别为圆柱上、下底面上相互垂直的两条直径,则被削去部分的体积为______
7日内更新 | 265次组卷 | 2卷引用:专题13.6空间图形的表面积和体积-重难点突破及混淆易错规避(苏教版2019必修第二册)
2024·北京西城·二模
2 . 楔体形构件在建筑工程上有广泛的应用.如图,某楔体形构件可视为一个五面体,其中面为正方形.若,且与面的距离为,则该楔体形构件的体积为(       

   

A.B.C.D.
2024-05-11更新 | 890次组卷 | 2卷引用:6.1 空间几何体及其表面积和体积(高考真题素材之十年高考)
2024·河北邢台·二模
填空题-单空题 | 适中(0.65) |
名校
3 . 如图,四边形是两个相同的矩形,面积均为300,图中阴影部分也是四个相同的矩形,现将阴影部分分别沿折起,得到一个无盖长方体,则该长方体体积的最大值为________

2024-05-06更新 | 440次组卷 | 2卷引用:第29题 立体问题常思降维化平面,几何最值莫忘函数不等式(优质好题一题多解)
4 . 如图,现有棱长为6cm的正方体玉石缺失了一个角,缺失部分为正三棱锥,且分别为棱靠近的四等分点,若将该玉石打磨成一个球形饰品,则该球形饰品的体积的最大值为(       

   

A.B.
C.D.
2024-05-01更新 | 885次组卷 | 2卷引用:数学(全国卷理科01)
智能选题,一键自动生成优质试卷~
5 . 如图,四面体中,
   
(1)求证:平面平面
(2)若
①若直线与平面所成角为30°,求的值;
②若平面为垂足,直线与平面的交点为.当三棱锥体积最大时,求的值.
2024-04-27更新 | 572次组卷 | 3卷引用:江苏高二专题02立体几何与空间向量(第二部分)
6 . 如图,这是一个水上漂浮式警示浮标,它的主体由上面一个圆锥和下面一个半球体组成.已知该浮标上面圆锥的侧面积是下面半球面面积的2倍,则圆锥的体积与半球体的体积的比值为(       

   

A.B.C.D.
2024-04-17更新 | 850次组卷 | 4卷引用:专题13.6空间图形的表面积和体积-重难点突破及混淆易错规避(苏教版2019必修第二册)
7 . 在一个透明的正四棱柱形状的容器中,盛上一些水,只固定容器底面的一个顶点,容器位置自由倾斜,观察水的表面的形状、面积大小的变化,试指出各种变化的情形及各种量之间可能存在的关系.
2024-04-16更新 | 40次组卷 | 1卷引用:第五章 破解立体几何开放探究问题 专题二 立体几何开放题的解法 微点1 立体几何开放题的解法【基础版】
8 . 四面体三组对棱长分别为,证明:四面体的内切球半径
(其中




.)
2024-04-01更新 | 39次组卷 | 1卷引用:第四章 立体几何解题通法 专题二 体积法 微点2 体积法(二)【基础版】
2024高三·全国·专题练习
解答题-问答题 | 适中(0.65) |
9 . 设球的半径为,试根据祖暅原理设计一个与球体积相等的四棱锥.
2024-03-31更新 | 42次组卷 | 1卷引用:第四章 立体几何解题通法 专题二 体积法 微点2 体积法(二)【基础版】
2024高三·全国·专题练习
10 . 一圆锥内有一个体积为的内接三棱锥,其底面三角形的两个内角分别为,求圆锥的体积.
2024-03-31更新 | 53次组卷 | 1卷引用:第四章 立体几何解题通法 专题二 体积法 微点2 体积法(二)【基础版】
共计 平均难度:一般