1 . 在直角坐标系中,已知抛物线C:的焦点为F,过F的直线l与C交于M,N两点,且当l的斜率为1时,.
(1)求C的方程;
(2)设l与C的准线交于点P,直线PO与C交于点Q(异于原点),线段MN的中点为R,若,求面积的取值范围.
(1)求C的方程;
(2)设l与C的准线交于点P,直线PO与C交于点Q(异于原点),线段MN的中点为R,若,求面积的取值范围.
您最近一年使用:0次
2024-04-18更新
|
774次组卷
|
5卷引用:浙江省杭州市源清中学2024-2025学年高三上学期9月考试数学试题
浙江省杭州市源清中学2024-2025学年高三上学期9月考试数学试题福建省福州市2024届高三第三次质量检测数学试题 福建省厦门市2024届高中毕业班第三次质量检测数学试题(已下线)专题9 圆锥曲线中的范围、最值问题【练】(压轴大全)(已下线)重难点突破17 圆锥曲线中参数范围与最值问题(八大题型)
2 . 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.如图,已知抛物线的准线为为坐标原点,在轴上方有两束平行于轴的入射光线和,分别经上的点和点反射后,再经上相应的点和点反射,最后沿直线和射出,且与之间的距离等于与之间的距离.则下列说法中正确的是( )
A.若直线与准线相交于点,则三点共线 |
B.若直线与准线相交于点,则平分 |
C. |
D.若直线的方程为,则 |
您最近一年使用:0次
3 . 已知为坐标原点,F为抛物线C:的焦点,过点的直线交C于A、B两点,直线、分别交C于M、N,则的最小值为___________
您最近一年使用:0次
4 . 已知O为坐标原点,F为抛物线:的焦点,过点F且倾斜角为的直线交C于A、B两点(其中点A在第一象限),过线段的中点P作垂直于抛物线准线的直线,与准线交于点N,则下列说法正确的是( )
A.C的准线方程为 | B. |
C.三角形的面积 | D. |
您最近一年使用:0次
名校
解题方法
5 . 已知为拋物线的焦点,过点的直线与拋物线交于不同的两点,,拋物线在点处的切线分别为和,若和交于点,则的最小值为__________ .
您最近一年使用:0次
2024-01-18更新
|
2242次组卷
|
5卷引用:浙江省湖州市第一中学2024届高三下学期新高考数学模拟试题
浙江省湖州市第一中学2024届高三下学期新高考数学模拟试题辽宁省葫芦岛市2024届高三上学期1月学业质量监测考试数学试题山东省济南市山东实验中学2024届高三上学期第一次模拟测试数学试题(已下线)(新高考新结构)2024年高考数学模拟卷(三)(已下线)专题07 直线与圆、圆锥曲线
名校
解题方法
6 . 已知是抛物线的焦点,直线经过点交抛物线于A、B两点,则下列说法正确的是( )
A.以为直径的圆与抛物线的准线相切 |
B.若,则直线的斜率 |
C.弦的中点的轨迹为一条抛物线,其方程为 |
D.若,则的最小值为18 |
您最近一年使用:0次
2024-01-10更新
|
801次组卷
|
7卷引用:浙江省湖州市湖州中学2024届高三上学期第一次质量检测数学试题
浙江省湖州市湖州中学2024届高三上学期第一次质量检测数学试题河南省南阳市2023-2024学年高二上学期期中数学试题湖南省长沙市长郡中学2023-2024学年高二上学期阶段性检测数学试卷(已下线)模块五 专题6 期末全真模拟(拔高卷2)期末终极研习室(高二人教A版)河北省保定市唐县第一中学2023-2024学年高二上学期阶段性检测数学试题(已下线)3.3.2 抛物线的简单的几何性质(AB分层训练)-【冲刺满分】2023-2024学年高二数学重难点突破+分层训练同步精讲练(人教A版2019选择性必修第一册)【课后练】 3.3.2 抛物线的简单几何性质 课后作业-湘教版(2019)选择性必修第一册 第3章 圆锥曲线与方程
名校
解题方法
7 . 设为抛物线:的焦点,过点的直线与抛物线交于两点,过作与轴平行的直线,和过点且与垂直的直线交于点,与轴交于点,则( )
A.为定值 |
B.当直线的斜率为时,的面积为其中为坐标原点 |
C.若为的准线上任意一点,则直线,,的斜率成等差数列 |
D.点到直线的距离为 |
您最近一年使用:0次
2023-04-09更新
|
1535次组卷
|
3卷引用:浙江省杭州地区(含周边重点中学)2023届高三一模数学试题
浙江省杭州地区(含周边重点中学)2023届高三一模数学试题(已下线)第五篇 向量与几何 专题11 圆锥曲线中的蝴蝶定理 微点3 圆锥曲线中的蝴蝶定理综合训练江苏省无锡市第一中学2023-2024学年高二上学期12月质量检测数学试卷
解题方法
8 . 已知抛物线,过焦点的直线交抛物线于,两点,且.
(1)求抛物线的方程;
(2)若点,直线,分别交准线于,两点,证明:以线段为直径的圆过定点.
(1)求抛物线的方程;
(2)若点,直线,分别交准线于,两点,证明:以线段为直径的圆过定点.
您最近一年使用:0次
解题方法
9 . 已知抛物线的焦点为,过点作直线交抛物线于点,过分别向抛物线的准线作垂线,垂足分别为,线段的中点为,则( )
A. | B. |
C. | D.面积的最小值为4 |
您最近一年使用:0次
10 . 抛物线,过焦点的直线与抛物线交于两点(点A在第一象限),,则下列说法正确的是( )
A.最小值为4 |
B.有可能是钝角 |
C.当直线的倾斜角为时,与面积之比为3 |
D.当直线与抛物线只有一个公共点时, |
您最近一年使用:0次