组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 39 道试题
1 . 现有一种不断分裂的细胞,每个时间周期内分裂一次,一个细胞每次分裂能生成一个或两个新的细胞,每次分裂后原细胞消失.设每次分裂成一个新细胞的概率为,分裂成两个新细胞的概率为;新细胞在下一个周期内可以继续分裂,每个细胞间相互独立.设有一个初始的细胞,在第一个周期中开始分裂,其中
(1)设结束后,细胞的数量为,求的分布列和数学期望;
(2)设结束后,细胞数量为的概率为
(ⅰ)求
(ⅱ)证明:
2024-08-07更新 | 226次组卷 | 1卷引用:河南省濮阳市2024届高三下学期数学模拟试题(三)
2 . 某汽车销售公司为了提升公司的业绩,现将最近300个工作日每日的汽车销售情况进行统计,如图所示.

   

(1)求的值以及该公司这300个工作日每日汽车销售量的平均数(同一组中的数据用该组区间的中点值作代表);
(2)以频率估计概率,若在所有工作日中随机选择4天,记汽车销售量在区间内的天数为,求的分布列及数学期望;
(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:抽奖区有两个盒子,其中盒中放有9张金卡、1张银卡,盒中放有2张金卡、8张银卡,顾客在不知情的情况下随机选择其中一个盒子进行抽奖,直到抽到金卡则抽奖结束(每次抽出一张卡,然后放回原来的盒中,再进行下次抽奖,中途可更换盒子),卡片结果的排列对应相应的礼品.已知顾客小明每次抽奖选择两个盒子的概率相同,求小明在首次抽奖抽出银卡的条件下,第二次从另外一个盒子中抽奖抽出金卡的概率.
3 . 在11分制乒乓球比赛中,每赢一球得1分,当某局打成平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为p,乙发球时甲得分的概率为,各球的结果相互独立.已知在某局双方平后,甲先发球,两人又打了X个球该局比赛结束,且
(1)求p的值;
(2)求再打2个球甲新增的得分Y的分布列和均值;
(3)记事件“且甲获胜”的概率为,求
4 . 甲袋中有2个红球、3个黄球,乙袋中有3个红球、2个黄球,同时从甲、乙两袋中取出2个球交换,分别记交换后甲、乙两个袋子中红球个数的数学期望为,方差为,则下列结论正确的是(       
A.B.
C.D.
智能选题,一键自动生成优质试卷~
5 . 已知函数随机变量,随机变量的期望为.
(1)当时,求
(2)当时,求的表达式.
2024-06-16更新 | 436次组卷 | 4卷引用:河南省部分重点高中2023-2024学年高三下学期5月联考数学试卷 (新高考)
6 . 切比雪夫不等式是19世纪俄国数学家切比雪夫(1821.5~1894.12)在研究统计规律时发现的,其内容是:对于任一随机变量,若其数学期望和方差均存在,则对任意正实数,有.根据该不等式可以对事件的概率作出估计.在数字通信中,信号是由数字“0”和“1”组成的序列,现连续发射信号次,每次发射信号“0”和“1”是等可能的.记发射信号“1”的次数为随机变量,为了至少有的把握使发射信号“1”的频率在区间内,估计信号发射次数的值至少为______.
2024-06-11更新 | 937次组卷 | 13卷引用:河南省驻马店市新蔡县第一高级中学2025届高三上学期8月开学考试数学试题
7 . 设集合的非空子集,随机变量XY分别表示取到子集中的最大元素和最小元素的数值.
(1)若的概率为,求
(2)若,求的概率;
(3)求随机变量的均值.
2024-06-09更新 | 328次组卷 | 3卷引用:河南省信阳市新县高级中学2024届高三数学考前仿真冲刺卷
8 . 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.
2024-06-07更新 | 22075次组卷 | 14卷引用:河南省部分中学2023-2024学年高二下学期联考数学试题
9 . 第二次世界大战期间,了解德军坦克的生产能力对盟军具有非常重要的战略意义.已知德军的每辆坦克上都有一个按生产顺序从1开始的连续编号.假设德军某月生产的坦克总数为N,随机缴获该月生产的n辆()坦克的编号为,…,,记,即缴获坦克中的最大编号.现考虑用概率统计的方法利用缴获的坦克编号信息估计总数N.
甲同学根据样本均值估计总体均值的思想,用估计总体的均值,因此,得,故可用作为N的估计.
乙同学对此提出异议,认为这种方法可能出现的无意义结果.例如,当时,若,则,此时.
(1)当时,求条件概率
(2)为了避免甲同学方法的缺点,乙同学提出直接用M作为N的估计值.当时,求随机变量M的分布列和均值
(3)丙同学认为估计值的均值应稳定于实际值,但直观上可以发现N存在明确的大小关系,因此乙同学的方法也存在缺陷.请判断N的大小关系,并给出证明.
10 . 学校食堂每天中午都会提供两种套餐供学生选择(学生只能选择其中的一种),经过统计分析发现:学生第一天选择套餐概率为,选择套餐概率为;而前一天选择了套餐的学生第二天选择套餐的概率为,选择套餐的概率为;前一天选择套餐的学生第二天选择套餐的概率为,选择套餐的概率也是;如此反复,记某同学第天选择套餐的概率为,选择套餐的概率为;5个月(150天)后,记甲、乙、丙三位同学选择套餐的人数为,则下列说法中正确的是(       
A.B.C.D.
2024-05-24更新 | 819次组卷 | 8卷引用:河南省驻马店市新蔡县第一高级中学2023-2024学年高二下学期6月月考数学试题
共计 平均难度:一般