组卷网 > 高中数学综合库 > 平面解析几何 > 圆锥曲线 > 直线与圆锥曲线的位置关系 > 直线与双曲线的位置关系 > 根据直线与双曲线的位置关系求参数或范围
题型:解答题-问答题 难度:0.15 引用次数:602 题号:22052343
已知分别为双曲线的左、右支上的点,的右焦点为为坐标原点.
(1)若三点共线,且的面积为,求直线的方程.
(2)若直线与圆相切,试判断是否为定值.若是,求出该定值;若不是,请说明理由.

相似题推荐

解答题-证明题 | 困难 (0.15)
名校
【推荐1】已知双曲线C的左焦点为F,过点F作直线lC的左支于AB两点.
(1)若,求l的方程;
(2)若点,直线AP交直线于点Q.设直线QAQB的斜率分别,求证:为定值.
2022-11-16更新 | 1622次组卷
解答题-问答题 | 困难 (0.15)
名校
解题方法
【推荐2】对于曲线所在的平面上的定点,若存在以点为顶点的角,使得对于曲线上的任意两个不同的点恒成立,则称角为曲线的“点视角”,并称其中最小的“点视角”为曲线相对于点的”点确视角”.已知曲线和圆轴上一点
(1)对于坐标原点,写出曲线的“点确视角”的大小;
(2)若在曲线上,求的最小值;
(3)若曲线和圆的“点确视角”相等,求点坐标.
2019-11-07更新 | 692次组卷
解答题-问答题 | 困难 (0.15)
【推荐3】已知双曲线的右焦点为,渐近线方程为,过的直线与的两条渐近线分别交于两点.
(1)求的方程;
(2)若直线的斜率为1,求线段的中点坐标;
(3)点上,且.过且斜率为的直线与过且斜率为的直线交于点.从下面①②③中选取两个作为条件,证明另外一个成立.①上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
2022-10-16更新 | 1067次组卷
共计 平均难度:一般