组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 670 道试题
1 . “现值”与“终值”是利息计算中的两个基本概念,终值是现在的一笔钱按给定的利息率计算所得到的在未来某个时间点的价值。现值是未来的一笔钱按给定的利息率计算所得到的现在的价值。例如,在复利计息的情况下,设本金为A,每期利率为r,期数为n,到期末的本利和为S,则其中,S称为n期末的终值,A称为n期后终值S的现值,即n期后的S元现在的价值为.现有如下问题:小明想买一套房子有如下两个方案
方案一:一次性付全款50万元;
方案二:分期付款,每年初付款6万元,第十年年初付完;
(1)已知一年期存款的年利率为4%,试讨论两种方案哪一种更好?
(2)若小明把房子租出去,第一年年初需交纳租金2万元,此后每年初涨租金1000元,假设存款的年利率为4%,预计第十年房租到期后小明所获得全部租金的终值.(精确到百元).参考数据:
2023-10-29更新 | 355次组卷 | 3卷引用:1.4 数列在日常经济生活中的应用4种常见考法归类-【帮课堂】2023-2024学年高二数学同步学与练(北师大版2019选择性必修第二册)
2 . 已知四名选手参加某项比赛,其中为种子选手,为非种子选手,种子选手对非种子选手种子选手获胜的概率为,种子选手之间的获胜的概率为,非种子选手之间获胜的概率为.比赛规则:第一轮两两对战,胜者进入第二轮,负者淘汰;第二轮的胜者为冠军.
(1)若你是主办方,则第一轮选手的对战安排一共有多少不同的方案?
(2)选手与选手相遇的概率为多少?
(3)以下两种方案,哪一种种子选手夺冠的概率更大?
方案一:第一轮比赛种子选手与非种子选手比赛;
方案二:第一轮比赛种子选手与种子选手比赛.
2024-05-19更新 | 1372次组卷 | 5卷引用:核心考点5 条件概率与全概率公式 B提升卷 (高二期末考试必考的10大核心考点)
解答题-应用题 | 适中(0.65) |
解题方法
3 . “现值”与“终值”是利息计算中的两个基本概念,掌握好这两个概念,对于顺利解决有关金融中的数学问题以及理解各种不同的算法都是十分有益的.所谓“现值”是指在期末的金额,把它扣除利息后,折合成现时的值,而“终值”是指期后的本利和.它们计算的基点分别是存期的起点和终点.例如,在复利计息的情况下,设本金为,每期利率为,期数为,到期末的本利和为,则其中,称为期末的终值,称为期后终值的现值,即期后的元现在的价值为.
现有如下问题:小明想买一座公寓有如下两个方案
方案一:一次性付全款25万元;
方案二:分期付款,每年初付款3万元,第十年年初付完;
(1)已知一年期存款的年利率为,试讨论两种方案哪一种更好?
(2)若小明把房子租出去,第一年年初需交纳租金2万元,此后每年初涨租金1000元,参照第(1))问中的存款年利率,预计第十年房租到期后小明所获得全部租金的终值.(精确到百元)
参考数据:
2023-03-26更新 | 1559次组卷 | 6卷引用:1.4 数列在日常经济生活中的应用4种常见考法归类-【帮课堂】2023-2024学年高二数学同步学与练(北师大版2019选择性必修第二册)
4 . 新冠疫情不断反弹,各大商超多措并举确保市民生活货品不断档,超市员工加班加点工作.某大型超市为答谢各位员工一年来的锐意进取和辛勤努力,拟在年会后,通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有5种面值奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.
(1)若箱子中所装的5种面值的奖券中有2张面值为100元,其余3张均为50元,试比较员工获得100元奖励额与获得150元奖励额的概率的大小;
(2)公司对奖励总额的预算是7万元,预定箱子中所装的5种面值的奖券有两种方案:第一方案是3张面值30元和2张面值130元;第二方案是3张面值50元和2张面值100元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.
2023-04-14更新 | 661次组卷 | 9卷引用:第10讲 离散型随机变量的均值与方差-【寒假预科讲义】2024年高二数学寒假精品课(人教A版2019)
5 . 矮化密植是指应用生物或栽培措施使果树生长树冠紧凑的方法,它与常规的矮小栽培相比有许多优势,如采用这种矮化果树可以建立比常规果园定植密度更高的果园,不仅能提高土壤及光能利用率,还能够获得更多的早期经济效益.某乡镇计划引进AB两种矮化果树,已知A种矮化果树种植成功率为,成功后每公顷收益7.5万元;B种矮化果树种植成功率为,成功后每公顷收益9万元.假设种植不成功时,种植AB两种矮化果树每公顷均损失1.5万元,每公顷是否种植成功相互独立.
(1)甲种植户试种两种矮化果树各1公顷,总收益为X万元,求X的分布列及数学期望;
(2)乙种植户有良田6公顷,本计划全部种植A,但是甲劝说乙应该种植两种矮化果树各3公顷,请按照总收益的角度分析一下,乙应选择哪一种方案?
2024-01-10更新 | 395次组卷 | 5卷引用:第04讲 7.3.1离散型随机变量的均值-【帮课堂】2023-2024学年高二数学同步学与练(人教A版2019选择性必修第三册)
6 . 2022年是中国共产主义青年团成立100周年,某中学为此举办了一次共青团史知识竞赛,并规定成绩在内为成绩优秀.现对参赛的100名学生的竞赛成绩进行统计,得到如下人数分布表.
成绩
人数20403010
(1)根据以上数据完成列联表,并判断是否有95%的把握认为此次竞赛成绩与该学生是初中生还是高中生有关;
优秀非优秀合计
初中生20
高中生45
合计
(2)为鼓励学生积极参加这次知识竞赛,学校后勤部给参与竞赛的学生制定了两种不同的奖励方案:
方案一:参加了竞赛的学生每人都可抽奖1次,且每次抽奖互不影响,每次中奖的概率均为,抽中奖励价值50元的食堂充值卡,未抽中无奖励;方案二:竞赛成绩优秀的抽奖两次,其余学生抽奖一次,抽奖者点击抽奖按钮,即随机产生一个数字(),若产生的数字能被3整除,则可奖励价值40元的食堂充值卡,否则奖励20元的食堂充值卡(充值卡奖励可叠加).若学校后勤部负责人希望让学生得到更多的奖励,则该负责人应该选择哪一种奖励方案,并说明理由.
参考公式:..
附表:
0.1500.1000.0500.0100.005
2.0722.7063.8416.6357.879
2023-01-18更新 | 172次组卷 | 2卷引用:核心考点8 成对数据统计分析 B提升卷 (高二期末考试必考的10大核心考点)
7 . 某高新技术企业将产品质量视为企业的生命线,严抓产品质量关. 该企业新研发出了一种产品,该产品由三个电子元件构成,这三个电子元件在生产过程中的次品率分别为,组装过程中不会造成电子元件的损坏,若有一个电子元件是次品,则该产品不能正常工作,即为次品. 现安排质检员对这批产品一一检查,确保无任何一件次品流入市场.
(1)设“任取一件产品为次品”,“该产品仅有一个电子元件是次品”,求
(2)设一件产品中所含电子元件为次品的个数为,求的分布列和期望;
(3)现有两种方案,方案一:安排三个质检员先行检测这三个元件,次品不进入组装生产线;方案二:安排一个质检员检测成品,一旦发现次品,则取出重新更换次品的电子元件,更换电子元件的费用为20元/个. 已知每个质检员每月的工资为3000元,该企业每月生产该产品,请从企业获益的角度考虑,应该选择选择哪种方案?
2024-06-18更新 | 208次组卷 | 2卷引用:广东省东莞高级中学、东莞第六高级中学2023-2024学年高二下学期5月联合教学质量检测数学试卷
8 . 网上购物就是通过互联网检索商品信息,并通过电子订购单发出购物请求,厂商通过邮购的方式发货或通过快递公司送货上门,货到后通过银行转账、微信或支付宝支付等方式在线汇款.根据2019年中国消费者信息研究,超过的消费者更加频繁地使用网上购物,使得网上购物和送货上门的需求量激增,越来越多的消费者也首次通过第三方、品牌官方网站和微信社群等平台进行购物.某天猫专营店统计了2020年8月5日至9日这5天到该专营店购物的人数和时间第天间的数据,列表如表:
12345
75849398100

(1)由表中给出的数据是否可用线性回归模型拟合人数与时间之间的关系?若可用,估计8月10日到该专营店购物的人数(人数用四舍五入法取整数;若,则线性相关程度很高,可用线性回归模型拟合,计算时精确到.
(2)运用分层抽样的方法从第1天和第5天到该专营店购物的人中随机抽取7人,再从这7人中任取3人进行奖励,求这3人取自不同天的概率;
(3)该专营店为了吸引顾客,推出两种促销方案:方案一,购物金额每满100元可减10元;方案二,一次性购物金额超过800元可抽奖三次,每次中奖的概率均为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8折,中奖三次打6折.某顾客计划在此专营店一次性购买1000元的商品,请从实际付款金额的数学期望的角度分析选哪种方案更优惠.
参考数据:.附:相关系数,回归直线方程的斜率:.
2024-06-06更新 | 192次组卷 | 1卷引用:专题05 成对数据的统计分析(5大考点经典基础练+优选提升练)-【好题汇编】备战2023-2024学年高二数学下学期期末真题分类汇编(新高考专用)
9 . 当前,人工智能技术以前所未有的速度迅猛发展,并逐步影响我们的方方面面,人工智能被认为是推动未来社会发展和解决人类面临的全球性问题的重要手段.某公司在这个领域逐年加大投入,以下是近年来该公司对产品研发年投入额(单位:百万元)与其年销售量y(单位:千件)的数据统计表.

1

2

3

4

5

6

1

1.5

3

6

12

(1)公司拟分别用①和②两种方案作为年销售量关于年投入额的回归分析模型,请根据已知数据,确定方案①和②的经验回归方程;(计算过程保留到小数点后两位,最后结果保留到小数点后一位)
(2)根据下表数据,用决定系数(只需比较出大小)比较两种模型的拟合效果哪种更好,并选择拟合精度更高的模型,预测年投入额为百万元时,产品的销售量是多少?

经验回归方程

残差平方和

参考公式及数据:
2024-02-20更新 | 2258次组卷 | 11卷引用:第9章 统计 章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
10 . 某短视频软件经过几年的快速发展,深受人们的喜爱,该软件除了有娱乐属性外,也可通过平台推送广告.某公司为了宣传新产品,现有以下两种宣传方案:
方案一:投放该平台广告,据市场调研,其收益X分别为0元,20万元,40万元,且,期望
方案二:投放传统广告,据市场调研,其收益Y分别为10万元,20万元,30万元,其概率依次为
(1)请写出方案一的分布列,并求方差
(2)请你根据所学的统计知识给出建议,该公司宣传应该投放哪种广告?并说明你的理由.
2024-01-07更新 | 608次组卷 | 7卷引用:7.3.2离散型随机变量的方差(分层练习,8大题型)-2023-2024学年高二数学同步精品课堂(人教A版2019选择性必修第三册)
共计 平均难度:一般