组卷网 > 知识点选题 > 基本不等式求和的最小值
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 421 道试题

1 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.

阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等.

例如,,求证:

证明:原式

阅读材料二:解决多元变量问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究.

例如,正实数满足,求的最小值.

解:由,得

当且仅当,即时,等号成立.

的最小值为

波利亚在《怎样解题》中指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.

结合阅读材料解答下列问题:


(1)已知,求的值;
(2)若正实数满足,求的最小值.
2024-01-24更新 | 211次组卷 | 1卷引用:贵州省贵阳市普通中学2023-2024学年高一上学期期末监测考试数学试卷
2 . 已知函数.
(1)判断上的单调性,并证明;
(2)若,且都为正数,求证:.
3 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.
例如:在的条件下,当x为何值时,有最小值,最小值是多少?
解:∵,∴,即,∴,当且仅当,即时,有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)已知如,求下列各式的值:___________.
(2)若正数满足,则的最小值为___________.
2023-10-14更新 | 162次组卷 | 1卷引用:江苏省盐城市响水中学2023-2024学年高一上学期10月学情分析考试数学试题
4 . 问题:已知均为正实数,且,求证:.
证明:,当且仅当时,等号成立.学习上述解法并解决下列问题:
(1)若实数满足,试比较的大小,并说明理由;
(2)求的最小值,并求出使得最小的的值.
2023-11-01更新 | 100次组卷 | 1卷引用:江苏省扬州市邗江中学2023-2024学年高一上学期10月学情检测数学试题
智能选题,一键自动生成优质试卷~
5 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法,
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入:(4)整体求和等.
例如,,求证:.
证明:原式.
波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.
请根据阅读材料解答下列问题
(1)已知如,求___________.
(2)若,解方程.
(3)若正数满足,求的最小值.
6 . 已知ab为正数.
(1)已知,求证:
(2)若,证明:.
2023-10-17更新 | 174次组卷 | 1卷引用:江西省宜春中学2023-2024学年高一上学期第一次月考数学试题
7 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.
例如,已知,求证:
证明:原式
波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.
请根据上述材料解答下列问题:
(1)已知,求的值;
(2)若,解方程
(3)若正数满足,求的最小值.
2022-10-21更新 | 437次组卷 | 4卷引用:广东省中山市2022-2023学年高一上学期第一次调研数学试题
8 . 记的内角所对的边分别为,已知.
(1)求证:
(2)若的面积,求的最大值,并证明:当取最大值时,为直角三角形.
2022-12-06更新 | 755次组卷 | 3卷引用:安徽省皖优联盟2022-2023学年高三上学期12月第二次阶段性联考数学试题
9 . 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察:(2)整体设元:(3)整体代入:(4)整体求和等.例如,,求证:.证明:原式.波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.阅读材料二:基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具.例如:在的条件下,当x为何值时,有最小值,最小值是多少?
2022-10-18更新 | 145次组卷 | 1卷引用:江苏省盐城中学2022-2023学年高一上学期第一次月考数学试题
10 . 若函数对任意的均有,则称函数具有性质.
(1)判断下面函数①;②是否具有性质,并说明理由;
(2)全集为,函数,试判断并证明函数是否具有性质
(3)若函数具有性质,且,求证:是否对任意均有
共计 平均难度:一般