组卷网 > 章节选题 > 必修3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 29 道试题
1 . 某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分布在(单位:克)中,经统计频率分布直方图如图所示.

(1)估计这组数据的平均数;
(2)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中共有芒果大约10000个,经销商提出以下两种收购方案:
方案①:所有芒果以10元/千克收购;
方案②:对质量低于350克的芒果以3元/个收购,对质量高于或等于350克的芒果以5元/个收购.
请通过计算确定种植园选择哪种方案获利更多?
2 . 梅州市沙田柚根据色泽、果面、风味等评分指标打分,得分在区间(0,25],(25,50],(50,75],(75,100]内分别评定为三级柚、二级柚、一级柚,特级柚,某经销商从我市柚农手中收购一批沙田柚,共M袋(每袋50kg),并随机抽取20袋分别进行检测评级,得分数据的频率分布直方图如图所示:

(1)求a的值,并用样本估计该经销商采购的这批沙田柚的平均得分;
(2)该经销商计划在下面两个方案中选择一个作为销售方案:
方案1:将采购的这批沙田柚不经检测,统一按每袋350元直接售出;
方案2:将采购的这批沙田柚逐袋检测分级,并将每袋沙田柚重新包装成5小袋(每小袋10kg),检测分级所需费用和人工费平均每袋20元,各等级沙田柚每小袋的售价和包装材料成本如下表所示:
沙田柚等级三级二级一级特级
售价(元/小袋)55688598
包装材料成本(元/小装)2245
假设这批沙田柚各级比例按前面随机抽取的20袋的样本结果估计,并可以全部销售出去,那么该经销商采用哪种销售方案所得利润更大?请通过计算说明理由.
2022-07-08更新 | 325次组卷 | 2卷引用:广东省梅州市2021-2022学年高一下学期期末数学试题
3 . 中国北京世界园艺博览会于2019年4月29日至10月7日在北京市延庆区举行.组委会为方便游客游园,特推出“导引员”服务.“导引员”的日工资方案如下:
方案:由三部分组成
(表一)
底薪150元
工作时间6元/小时
行走路程11元/公里
方案:由两部分组成:(1)根据工作时间20元/小时计费;(2)行走路程不超过4公里时,按10元/公里计费;超过4公里时,超出部分按15元/公里计费.已知“导引员”每天上班8小时,由于各种因素,“导引员”每天行走的路程是一个随机变量.试运行期间,组委会对某天100名“导引员”的行走路程述行了统计,为了计算方便对日行走路程进行取整处理.例如行走1.8公里按1公里计算,行走5.7公里按5公里计算.如表所示:
(表二)
行走路程
(公里)
人数510154525
(Ⅰ)分别写出两种方案的日工资(单位:元)与日行走路程(单位:公里)的函数关系
(Ⅱ)①现按照分层抽样的方工式从共抽取5人组成爱心服务队,再从这5人中抽取3人当小红帽,求小红帽中恰有1人来自的概率;
②“导引员”小张因为身体原因每天只能行走12公里,如果仅从日工资的角度考虑,请你帮小张选择使用哪种方案会使他的日工资更高?
4 . 从某商场随机抽取了2000件商品,按商品价格(元)进行统计,所得频率分布直方图如图所示.记价格在对应的小矩形的面积分别为,且.

(1)按分层抽样从价格在的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;
(2)在清明节期间,该商场制定了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)
商品价格
优惠(元)3050140160280320

2020-02-24更新 | 254次组卷 | 3卷引用:广东省汕头市潮阳区棉城中学2021-2022学年高二上学期期中数学试题
5 . 某玻璃工艺品加工厂有2条生产线用于生产其款产品,每条生产线一天能生产200件该产品,该产品市场评级规定:评分在10分及以上的为等品,低于10分的为等品.厂家将等品售价定为2000元/件,等品售价定为1200元/件.
下面是检验员在现有生产线上随机抽取的16件产品的评分:
9.9510.129.969.9610.019.929.9810.04
10.269.9110.1310.029.2210.0410.059.95

经计算得,其中为抽取的第件产品的评分,.
该厂计划通过增加生产工序来改进生产工艺,已知对一条生产线增加生产工序每年需花费1500万元,改进后该条生产线产能不变,但生产出的每件产品评分均提高0.05.已知该厂现有一笔1500万元的资金.
(1)若厂家用这1500万元改进一条生产线,根据随机抽取的16件产品的评分.
(i)估计改进后该生产线生产的产品中等品所占的比例;
(ii)估计改进后该厂生产的所有产品评分的平均数和方差.
(2)某金融机构向该厂推销一款年收益率为的理财产品,请你利用所学知识分析,将这1500万元用于购买该款理财产品所获得的收益,与通过改进一条生产线使产品评分提高所增加的收益相对比,一年后哪种方案的收益更大? (一年按365天计算)
6 . 某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人5次数学考试的成绩,统计结果如下表:
第一次第二次第三次第四次第五次
甲的成绩(分)8085719287
乙的成绩(分)9076759282

(Ⅰ)已知甲、乙两名学生这5次数学考试成绩的平均分都为83分,若从甲、乙两名学生中选一人参加数学竞赛,请从统计学的角度考虑,你认为选谁参加数学竞赛较合适?并说明理由;
(Ⅱ)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰.方案二:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被淘汰.已知学生甲、乙都只会5道备选题中的3道,那么你推荐的选手选择哪种答题方案进入复赛的可能性更大?并说明理由.
2020-08-16更新 | 571次组卷 | 6卷引用:广东省培正中学2021-2022学年高二上学期开学考数学试题
7 . 某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计的频率分布直方图如图所示.

(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.
参考数据:
8 . 某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
2020-01-10更新 | 1303次组卷 | 17卷引用:【市级联考】广东省潮州市2019届高三上学期期末教学质量检测数学(文)试题
9 . 某省实行“”高考模式,为让学生适应新高考的赋分模式,某校在一次校考中使用赋分制给高三年级学生的生物成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定共五个等级,然后在相应赋分区间内利用转换公式进行赋分.其中,等级排名占比,赋分分数区间是等级排名占比,赋分分数区间是等级排名占比,赋分分数区间是等级排名占比,赋分分数区间是等级排名占比,赋分分数区间是;现从全年级的生物成绩中随机抽取名学生的原始成绩(未赋分)进行分析,其频率分布直方图如下图:
      
(1)求图中的值;
(2)从生物原始成绩为的学生中用分层抽样的方法抽取人,从这人中任意抽取人,求人均在的概率;
(3)用样本估计总体的方法,估计该校本次生物成绩原始分不少于多少分才能达到赋分后的等级及以上(含等级)?(结果保留整数)
10 . 为响应十九大报告中提出的“绿水青山就是金山银山”的号召,某市旅游局投入若干经费对全市各旅游景区的环境进行综合治理,并且对各旅游景区收益的增加值作了初步的估计.根据旅游局的治理规划方案,收集了各旅游景区在治理后收益的增加值,将所有数据按照[0,2),[2,4),…,[10,12)分成6组,绘制出如下频率分布直方图.

(1)求图中m的值;
(2)利用频率分布直方图估算全市旅游景区收益增加值的平均数(以各组的区间中点值代表该组的取值);
(3)若该市旅游局打算奖励收益增加值前10%的旅游景区,需要制定一个标准t万元(即收益增加值大于t则奖励)估计t的值,并说明理由.
2022-06-03更新 | 713次组卷 | 5卷引用:广东省广州市执信中学2021-2022学年高一下学期5月月考数学试题
共计 平均难度:一般