名校
1 . 有如下条件:
①对,,2,,均有;
②对,,2,,均有;
③对,,2,3,;若,则均有;
④对,,2,3,;若,则均有.
(1)设函数,,请写出该函数满足的所有条件序号,并充分说明理由;
(2)设,比较函数,,值的大小,并说明理由;
(3)设函数,满足条件②,求证:的最大值.(注:导数法不予计分)
①对,,2,,均有;
②对,,2,,均有;
③对,,2,3,;若,则均有;
④对,,2,3,;若,则均有.
(1)设函数,,请写出该函数满足的所有条件序号,并充分说明理由;
(2)设,比较函数,,值的大小,并说明理由;
(3)设函数,满足条件②,求证:的最大值.(注:导数法不予计分)
您最近一年使用:0次
2024-02-23更新
|
678次组卷
|
5卷引用:河南省驻马店市新蔡县第一高级中学2023-2024学年高一下学期3月月考数学试题
2 . (1)在中,点在边上且,以向量,为基底,表示向量.
(2)已知空间向量,且,,,求证:A、B、D三点共线.
您最近一年使用:0次
3 . 已知.
(1)求证:;
(2)若关于的方程有两个不相等的实根,求实数的取值范围.
(1)求证:;
(2)若关于的方程有两个不相等的实根,求实数的取值范围.
您最近一年使用:0次
名校
4 . 给定平面上一个图形D,以及图形D上的点,如果对于D上任意的点P,为与P无关的定值,我们就称为关于图形D的一组稳定向量基点.
(1)已知为图形D,判断点是不是关于图形D的一组稳定向量基点;
(2)若图形D是边长为2的正方形,是它的4个顶点,P为该正方形上的动点,求的取值范围;
(3)若给定单位圆及其内接正2024边形为该单位圆上的任意一点,证明是关于圆的一组稳定向量基点,并求的值.
(1)已知为图形D,判断点是不是关于图形D的一组稳定向量基点;
(2)若图形D是边长为2的正方形,是它的4个顶点,P为该正方形上的动点,求的取值范围;
(3)若给定单位圆及其内接正2024边形为该单位圆上的任意一点,证明是关于圆的一组稳定向量基点,并求的值.
您最近一年使用:0次
2024-09-07更新
|
298次组卷
|
3卷引用:河南省驻马店市新蔡县第一高级中学2025届高三上学期9月月考数学试题
河南省驻马店市新蔡县第一高级中学2025届高三上学期9月月考数学试题河北省保定市部分高中2024-2025学年高二上学期开学考试数学试题(已下线)考点30 平面向量与多学科交汇问题 --高考数学100个黄金考点(2025届)【讲】
名校
5 . 对于三维向量,定义“变换”:,其中,.记,.
(1)若,求及;
(2)证明:对于任意,经过若干次变换后,必存在,使;
(3)已知,将再经过次变换后,最小,求的最小值.
(1)若,求及;
(2)证明:对于任意,经过若干次变换后,必存在,使;
(3)已知,将再经过次变换后,最小,求的最小值.
您最近一年使用:0次
2023-07-11更新
|
1843次组卷
|
8卷引用:河南省驻马店市新蔡县第一高级中学2024-2025学年高二上学期8月开学考试数学试题
河南省驻马店市新蔡县第一高级中学2024-2025学年高二上学期8月开学考试数学试题北京市东城区2022-2023学年高一下学期期末统一检测数学试题北京市第十一中学2023-2024学年高二上学期期中练习数学试题广东省东莞市石竹实验学校2023-2024学年高一下学期3月月考数学试卷(已下线)专题02 高一下期末真题精选(1)-期末考点大串讲(人教A版2019必修第二册)【北京专用】专题07平面向量(第三部分)-高一下学期名校期末好题汇编(已下线)专题08 期末必刷解答题专题训练的7种常考题型归类-期末真题分类汇编(北师大版2019必修第二册)(已下线)专题7 线性代数、抽象代数与数论背景的新定义压轴大题(过关集训)
名校
解题方法
6 . 已知,.
(1)证明:;
(2)计算:的值.
(1)证明:;
(2)计算:的值.
您最近一年使用:0次
2022-07-13更新
|
1264次组卷
|
4卷引用:河南省驻马店市2021-2022学年高一下学期期末数学试题
河南省驻马店市2021-2022学年高一下学期期末数学试题两角和与差的正弦、余弦和正切公式江西省宁冈中学2023届高三上学期12月月考数学(理)试题(已下线)同角三角函数基本关系式及诱导公式-一轮复习考点专练