组卷网 > 章节选题 > 2.3.2 离散型随机变量的方差
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 536 道试题
1 . 已知随机性离散变量的分布列如下,则的值可以是(       

0

1

2

A.B.C.D.1
2024-03-13更新 | 370次组卷 | 1卷引用:2024届高三新高考改革数学适应性练习(6)(九省联考题型)
2 . 第十四届全国冬季运动会雪橇项目比赛于2023年12月16日至17日在北京延庆举行,赛程时间安排如下表:

12月16日

星期六

9:30

单人雪橇第1轮

10:30

单人雪橇第2轮

15:30

双人雪橇第1轮

16:30

双人雪橇第2轮

12月17日

星期日

9:30

单人雪橇第3轮

10:30

单人雪橇第4轮

15:30

团体接力

(1)若小明在每天各随机观看一场比赛,求他恰好看到单人雪橇和双人雪橇的概率;
(2)若小明在这两天的所有比赛中随机观看三场,记为看到双人雪橇的次数,求的分布列及期望
(3)若小明在每天各随机观看一场比赛,用“”表示小明在周六看到单人雪橇,“” 表示小明在周六没看到单人雪橇,“”表示小明在周日看到单人雪橇,“”表示小明在周日没看到单人雪橇,写出方差的大小关系.
2024-03-12更新 | 1030次组卷 | 3卷引用:2024届北京市延庆区高考一模数学试题
3 . 2022年二十国集团领导人第十七次峰会11月16日在印度尼西亚巴厘岛闭幕,峰会通过《二十国集团领导人巴厘岛峰会宣言》.宣言说,值此全球经济关键时刻,二十国集团采取切实、精准、迅速和必要的行动至关重要,基于主席国印尼提出的“共同复苏、强劲复苏”主题,各国将采取协调行动,推进强劲、包容、韧性的全球复苏以及创造就业和增长的可持续发展、中国采取负责任的态度,积极推动产业的可持续发展,并对友好国家进行技术援助。非洲某芯片企业生产芯片I有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.
(1)在中国企业援助前,该芯片企业生产芯片I的前三道工序的次品率分别为
①求生产该芯片的前三道工序的次品率
②第四道工序中,智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行抽查检验.已知芯片I智能自动检测显示合格率为,求工人在流水线进行人工抽检时,抽检一个芯片,该芯片恰为合格品的概率;
(2)该芯片企业在中国企业援助下,改进生产工艺并生产了芯片II.某手机生产厂商获得芯片I与芯片II,并在某款新型手机上使用.现对使用这款手机的用户回访,对开机速度进行满意度调查,据统计,回访的100名用户中,安装芯片I的有40部,其中对开机速度满意的占;安装芯片II的有60部,其中对开机速度满意的占.现采用分层抽样的方法从开机速度满意的人群中抽取6人,再从这6人中选取3人进行座谈,记抽到对安装芯片II的手机开机速度满意的人数为,求的分布列及其数学期望.
2024-03-09更新 | 579次组卷 | 1卷引用:四川省成都市第七中学2024届高三下学期二诊模拟考试理科数学试卷
4 . 某校举行知识竞赛,最后一个名额要在AB两名同学中产生,测试方案如下:AB两名学生各自从给定的4个问题中随机抽取3个问题作答,在这4个问题中,已知A能正确作答其中的3个,B能正确作答每个问题的概率都是AB两名同学作答问题相互独立.
(1)求AB两名同学恰好共答对2个问题的概率;
(2)若让你投票决定参赛选手,你会选择哪名学生,简要说明理由.
2024-03-08更新 | 752次组卷 | 1卷引用:云南省昆明市第一中学2024届高三第七次高考仿真模拟数学试题
5 . 已知随机变量的分布列如下:

1

2

的(       
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2024-03-07更新 | 2415次组卷 | 11卷引用:广东省2024届高三百日冲刺联合学业质量监测(一模)数学试题
6 . 某商场推出购物抽奖促销活动,活动规则如下:
①顾客在商场内消费每满100元,可获得1张抽奖券;
②顾客进行一次抽奖需消耗1张抽奖券,抽奖规则为:从放有5个白球,1个红球的盒子中,随机摸取1个球(每个球被摸到的可能性相同),若摸到白球,则没有中奖,若摸到红球,则可获得1份礼品,并得到一次额外抽奖机会(额外抽奖机会不消耗抽奖券,抽奖规则不变);
③每位顾客获得的礼品数不超过3份,若获得的礼品数满3份,则不可继续抽奖;
(1)顾客甲通过在商场内消费获得了2张抽奖券,求他通过抽奖至少获得1份礼品的概率;
(2)顾客乙累计消耗3张抽奖券抽奖后,获得的礼品数满3份,则他在消耗第2张抽奖券抽奖的过程中,获得礼品的概率是多少?
(3)设顾客在消耗张抽奖券抽奖后,获得的礼品数满3份,要获得张抽奖券,至少要在商场中消费满元,求的值.
(重复进行某个伯努利试验,且每次试验的成功概率均为.随机变量表示当恰好出现次失败时已经成功的试验次数.则服从参数为的负二项分布.记作.它的均值,方差
2024-03-07更新 | 746次组卷 | 1卷引用:浙江省Z20名校联盟(名校新高考研究联盟)2024届高三第二次联考数学试题
7 . 在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最小的一组是(       
A.B.
C.D.
2024-03-03更新 | 599次组卷 | 6卷引用:安徽省蚌埠市2024届高三下学期第三次教学质量检查数学试题
8 . 设,随机变量取值的概率均为0.2,随机变量取值的概率也均为0.2,若记分别为的方差,则(       
A.
B.
C.
D.的大小关系与的取值有关
2024-03-03更新 | 1267次组卷 | 5卷引用:广东省广州市天河区2024届高三毕业班综合测试(二)数学试卷
9 . 设离散型随机变量的分布列为:

0

1

2

3

0.4

0.3

0.2

若离散型随机变量满足,则(       
A.B.
C.D.
2024-02-23更新 | 1297次组卷 | 4卷引用:江西省部分学校2023-2024学年高二上学期1月期末数学试题
10 . 某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了张相同的卡片,其中只在张卡片上印有“奖”字.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
首页2 3 4 5 6 7 8 9 末页
跳转: 确定
共计 平均难度:一般