1 . 已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点、.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求的最大值;
(Ⅲ)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点 共线,求.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求的最大值;
(Ⅲ)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点 共线,求.
您最近一年使用:0次
2018-06-09更新
|
15501次组卷
|
34卷引用:天津市和平区2021-2022 学年高二上学期期末质量调查数学试题
天津市和平区2021-2022 学年高二上学期期末质量调查数学试题【全国百强校】山西省祁县中学2018-2019学年高二上学期期末模拟一考试数学(理)试题北京市昌平区新学道临川学校2020-2021学年高二上学期期末考试数学(文)试题2018年全国普通高等学校招生统一考试文科数学(北京卷)(已下线)2018年高考题及模拟题汇编 【文科】6.解析几何【校级联考】江西省南昌市第八中学、第二十三中学、第十三中学2018-2019学年高二第一学期期中联考数学(文科)试题【全国百强校】江苏省海安高级中学2019届高三12月月考数学试题新疆奎屯市第一高级中学2018-2019学年高二下学期第一次月考数学(文)试题(已下线)专题9.5 椭圆(讲)-浙江版《2020年高考一轮复习讲练测》山东省济南市历城区历城第二中学2019-2020学年高二上学期期中数学试题(已下线)专题9.8 直线与圆锥曲线位置关系(练)-江苏版《2020年高考一轮复习讲练测》(已下线)专题9.5 椭圆(练)-江苏版《2020年高考一轮复习讲练测》2020届北京东城区五中高三开学考试理科数学试题陕西省西安市西北大学附中2019-2020学年高二上学期期中数学试题(已下线)冲刺卷06-决战2020年高考数学冲刺卷(山东专版)(已下线)提升套餐练06-【新题型】2020年新高考数学多选题与热点解答题组合练(已下线)专题08 平面解析几何(解答题)——三年(2018-2020)高考真题文科数学分项汇编(已下线)专题18 解析几何综合-五年(2016-2020)高考数学(文)真题分项(已下线)专题29 圆锥曲线的综合问题-十年(2011-2020)高考真题数学分项(已下线)专题9.6 直线与圆锥曲线(讲)-2021年新高考数学一轮复习讲练测(已下线)上海市华东师范大学第二附属中学2020-2021学年高二上学期12月月考数学试题(已下线)专题4.5 圆锥曲线-2021年高考数学解答题挑战满分专项训练(新高考地区专用)广东省湛江市第二十中学2020-2021学年高二下学期第一阶段考试数学试题(已下线)专题11 圆锥曲线-五年(2017-2021)高考数学真题分项(新高考地区专用)(已下线)押全国卷(文科)第20题 圆锥曲线-备战2022年高考数学(文)临考题号押题(全国卷)(已下线)专题12 定比点差法及其应用 微点1 定比点差法及其应用初步重庆市永川北山中学校2022-2023学年高二下学期入学考试数学试题(已下线)重组卷05(已下线)北京十年真题专题08平面解析几何北京十年真题专题08平面解析几何北京市第十二中学2023-2024学年高二上学期12月月考数学试题(已下线)专题24 解析几何解答题(文科)-1专题12平面解析几何(第二部分)(已下线)专题3 曲线系方程及其应用【练】(压轴题大全)
2 . 已知椭圆的离心率为,右焦点为.
(1)求椭圆的方程;
(2)设直线与椭圆交于A,B两点,求的面积.
(1)求椭圆的方程;
(2)设直线与椭圆交于A,B两点,求的面积.
您最近一年使用:0次
9-10高一下·黑龙江哈尔滨·期末
名校
解题方法
3 . 设椭圆过点,两点,O为坐标原点.
(1)求椭圆E的标准方程;
(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求的取值范围,若不存在,请说明理由.
(1)求椭圆E的标准方程;
(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求的取值范围,若不存在,请说明理由.
您最近一年使用:0次
2022-02-28更新
|
1829次组卷
|
16卷引用:天津市静海县第一中学2017-2018学年高二上学期期末终结性检测数学(理)试题(附加题)
天津市静海县第一中学2017-2018学年高二上学期期末终结性检测数学(理)试题(附加题)(已下线)2010年哈尔滨市第六中学高一下学期期末考试数学卷上海市徐汇区位育中学2015-2016学年高二上学期期末数学试题安徽省合肥市第一中学2021-2022学年高二上学期期末数学试题天津市十二区县重点学校2022届高三下学期一模考前模拟数学试题(已下线)高二上学期期末【压轴60题考点专练】(选修一+选修二)(已下线)2011~2012学年河北省衡水中学高三下学期理科数学试卷2015-2016学年江西省上饶二中高二上学期第三次月考文科数学试卷湖南省长沙市望城区第二中学2019-2020学年高二上学期第二次月考数学试题湖南省邵阳市邵东县第一中学2020-2021学年高二上学期期中数学试题高中数学解题兵法 第八十讲 数学解题、四大环节安徽省亳州市第一中学2021-2022学年高二下学期开年考数学试题四川省泸州市泸州老窖天府中学2020-2021学年高二上学期期中数学(文)试题四川省泸州老窖天府中学2020-2021学年高二上学期期中数学(理)试题(已下线)突破3.1 椭圆(课时训练)-【新教材优创】突破满分数学之2022-2023学年高二数学重难点突破+课时训练 (人教A版2019选择性必修第一册)河南省郑州市一八联合国际学校2023-2024学年高二上学期第三次月考数学试卷
名校
解题方法
4 . 已知椭圆的左右焦点为为其上顶点,正三角形
(1)求椭圆的离心率;
(2)若直线与椭圆交于两点,为坐标原点,直线的斜率之积等于的面积是,求椭圆的方程.
(1)求椭圆的离心率;
(2)若直线与椭圆交于两点,为坐标原点,直线的斜率之积等于的面积是,求椭圆的方程.
您最近一年使用:0次
2023-01-12更新
|
721次组卷
|
2卷引用:天津市静海区第一中学2022-2023学年高三上学期期末数学试题
名校
解题方法
5 . 已知椭圆的离心率为,左顶点为.
(1)求椭圆的方程;
(2)设直线与椭圆在第一象限的交点为,过点A的直线与椭圆交于点,若,且(为原点),求的值.
(1)求椭圆的方程;
(2)设直线与椭圆在第一象限的交点为,过点A的直线与椭圆交于点,若,且(为原点),求的值.
您最近一年使用:0次
2022-05-18更新
|
1117次组卷
|
4卷引用:天津市第四中学2022-2023学年高三上学期期末数学试题
天津市第四中学2022-2023学年高三上学期期末数学试题天津市部分区2022届高三下学期质量调查(二)数学试题(已下线)2022年新高考北京数学高考真题变式题9-12题(已下线)2022年新高考北京数学高考真题变式题19-21题
解题方法
6 . 设O为坐标原点,椭圆的离心率为,且过点.
(1)求C的方程;
(2)若直线与C交于P,Q两点,且的面积是,求证:.
(1)求C的方程;
(2)若直线与C交于P,Q两点,且的面积是,求证:.
您最近一年使用:0次
2022-09-28更新
|
1166次组卷
|
5卷引用:天津市第四十一中学2022-2023学年高三上学期线上期末练习数学试题
天津市第四十一中学2022-2023学年高三上学期线上期末练习数学试题江西省“红色十校”2023届高三上学期第一联考数学(文)试题江西省“红色十校”2023届高三上学期第一联考数学(理)试题(已下线)专题30 圆锥曲线三角形面积与四边形面积题型全归类-1(已下线)专题3-2 椭圆大题综合11种题型归类(讲+练)-【巅峰课堂】2023-2024学年高二数学热点题型归纳与培优练(人教A版2019选择性必修第一册)
名校
解题方法
7 . 已知椭圆方程,左右焦点分别 ,.离心率,长轴长为4.
(1)求椭圆方程.
(2)若斜率为1的直线交椭圆于A,B两点,与以,为直径的圆交于C,两点.若,求直线的方程.
(1)求椭圆方程.
(2)若斜率为1的直线交椭圆于A,B两点,与以,为直径的圆交于C,两点.若,求直线的方程.
您最近一年使用:0次
2024-01-24更新
|
596次组卷
|
3卷引用:天津市重点校2023-2024学年高二上学期期末联考数学试题
8 . 已知椭圆点,且离心率,F为椭圆C的左焦点.
(1)求椭圆C的方程;
(2)设点,过点F的直线l交椭圆C于P,Q两点,,连接OT与PQ交于点H.
①若,求;
②求的值.
(1)求椭圆C的方程;
(2)设点,过点F的直线l交椭圆C于P,Q两点,,连接OT与PQ交于点H.
①若,求;
②求的值.
您最近一年使用:0次
2022-11-08更新
|
945次组卷
|
6卷引用:天津市河北区2022-2023学年高三上学期期末数学试题
9 . 已知椭圆,离心率为分别为椭圆的左、右顶点,过焦点且垂直于轴的直线被椭圆截得的线段长为3.
(1)求椭圆的标准方程.
(2)当直线过椭圆的左焦点以及上顶点时,直线与椭圆交于另一点,求此时的弦长.
(3)设直线过点,且与轴垂直,为直线上关于轴对称的两点,直线与椭圆相交于异于的点,直线与轴的交点为,当与的面积之差取得最大值时,求直线的方程.
(1)求椭圆的标准方程.
(2)当直线过椭圆的左焦点以及上顶点时,直线与椭圆交于另一点,求此时的弦长.
(3)设直线过点,且与轴垂直,为直线上关于轴对称的两点,直线与椭圆相交于异于的点,直线与轴的交点为,当与的面积之差取得最大值时,求直线的方程.
您最近一年使用:0次
2023-01-13更新
|
451次组卷
|
2卷引用:天津市滨海新区塘沽第一中学2022-2023学年高二上学期期末数学试题
解题方法
10 . 已知椭圆的左、右焦点分别为,,离心率为,点P是椭圆C上的一个动点,且面积的最大值为.
(1)求椭圆C的方程;
(2)设斜率不为零的直线与椭圆C的另一个交点为Q.
(i)求的取值范围;
(ii)若的垂直平分线交y轴于点,求直线的斜率.
(1)求椭圆C的方程;
(2)设斜率不为零的直线与椭圆C的另一个交点为Q.
(i)求的取值范围;
(ii)若的垂直平分线交y轴于点,求直线的斜率.
您最近一年使用:0次