组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 10 道试题
1 . 魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.如图1,点在水平线上,是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,都称为“表目距”,的差称为“表目距的差”,则海岛的高,某同学受此法的启发设计了另一种测量此山高度的方案(如图2);他站在水平线上,同时在水平线上放一个小镜子(视为点),他在距离镜子米点时,通过镜子看到了山顶,然后沿水平线向靠近山的方向走了米,到达点,再将镜子放在距离自己米的前方点处,此时又看到了山顶,若此人的眼睛到水平线的距离为米,则此山的高度约为(       )米
   
A.B.C.D.
2023-12-03更新 | 387次组卷 | 2卷引用:江苏省淮安市淮阴中学、姜堰中学等三校2024届高三上学期12月阶段性测试数学试题
单选题 | 适中(0.65) |
名校
解题方法
2 . 文化广场原名地质宫广场,是长春市著名的城市广场,历史上地质宫广场曾被规划为伪满洲国的国都广场.文化广场以新民主大街道路中心线至地质宫广场主楼中央为南北主轴,广场的中央是太阳鸟雕塑塔,在地质宫(现为吉林大学地质博物馆)主楼辉映下显得十分壮观.现某兴趣小组准备在文化广场上对中央太阳鸟雕塑塔的高度进行测量,并绘制出测量方案示意图,A为太阳鸟雕塑最顶端,B为太阳鸟雕塑塔的基座(即BA的正下方),在广场内(与B在同一水平面内)选取CD两点.测得CD的长为m.兴趣小组成员利用测角仪可测得的角有,则根据下列各组中的测量数据,不能计算出太阳鸟雕塑塔高度AB的是(       
A.mB.m
C.mD.m
2022-11-19更新 | 869次组卷 | 7卷引用:数学(江苏A卷)
3 . 10世纪阿拉伯天文学家阿尔库希设计出一种方案,通过两个观察者异地同时观测同一颗小天体来测定小天体的高度.如图,有两个观察者在地球上AB两地同时观测到一颗卫星S,仰角分别为∠SAM和∠SBMMAMB表示当地的水平线,即为地球表面的切线),设地球半径为R的长度为,∠SAM=30°,∠SBM=45°,则卫星S到地面的高度为______

填空题-双空题 | 适中(0.65) |
名校
4 . 瀑布是庐山的一大奇观,唐代诗人李白曾在《望庐山瀑布中》写道:日照香炉生紫烟,遥看瀑布挂前川,飞流直下三千尺,疑是银河落九天.为了测量某个瀑布的实际高度,某同学设计了如下测量方案:沿一段水平山道步行至与瀑布底端在同一水平面时,在此位置测得瀑布顶端的仰角正切值为,沿山道继续走20,测得瀑布顶端的仰角为.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成角为.根据这位同学的测量数据,可知该瀑布的高度为___________;若第二次测量后,继续行进的山道有坡度,坡角大小为,且两段山道位于同一平面内,若继续沿山道行进,则该同学望向瀑布顶端与底端的视角正切值为___________.(此人身高忽略不计)
2022-08-13更新 | 1341次组卷 | 8卷引用:11.3 余弦定理、正弦定理的应用-【帮课堂】(苏教版2019必修第二册)
5 . 现有《诗经》、《尚书》、《礼记》、《周易》、《春秋》各一本,分给甲、乙、丙、丁、戊5名同学,每人一本,若甲乙都没有拿到《诗经》,且乙也没拿到《春秋》,则所有可能的分配方案有(       
A.18种B.24种C.36种D.54种
2021-05-22更新 | 1152次组卷 | 2卷引用:江苏省扬州市2021届高三下学期5月第四次模拟考试数学试题
单选题 | 适中(0.65) |
名校
解题方法
6 . 如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”.现提供4种颜色给“弦图”的5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有(  )

A.48种B.72种C.96种D.144种
7 . 如图,《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物馆.有甲、乙、丙三人想根据该图编排一个舞蹈,首先由他们来选取该图中小孩扑枣的爬、扶、捡、顶、摇中的五个动作,每人至少模仿一个动作,且爬、扶、捡、顶、摇都要被依序模仿到,则选择的方案共有(       
A.60种B.90种C.100种D.150种
2021-01-16更新 | 318次组卷 | 1卷引用:江苏省无锡市第一中学2020-2021学年高三上学期1月检测数学试题
8 . 概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.问这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是
A.甲48枚,乙48枚B.甲64枚,乙32枚
C.甲72枚,乙24枚D.甲80枚,乙16枚
2020-05-07更新 | 2436次组卷 | 12卷引用:江苏省南通市通州区石港中学2022-2023学年高二下学期第三次阶段检测数学试题
2020高三·浙江·专题练习
单选题 | 适中(0.65) |
名校
9 . 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有(       
A.180B.192C.420D.480
2020-01-04更新 | 2097次组卷 | 16卷引用:江苏省常州市横林高级中学2021—2022学年高二下学期5月阶段调研数学试题
单选题 | 适中(0.65) |
名校
10 . 如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有种

A.120B.260C.340D.420
2018-04-12更新 | 3555次组卷 | 20卷引用:江苏省苏州市张家港市沙洲中学2023-2024学年高二下学期3月阶段性测试数学试题
共计 平均难度:一般