组卷网 > 知识点选题 > 独立事件的乘法公式
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 14 道试题
1 . 体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发球到3次为止.设学生一次发球成功的概率为,发球次数为,若的均值,则的值可以为______.(填一个符合题意的值即可)
2022-08-29更新 | 208次组卷 | 1卷引用:2023版 北师大版(2019) 选修第一册 名师精选卷 第十五单元 离散型随机变量及其分布列、离散型随机变量的均值与方差
2 . 当前,新一轮科技革命和产业变革蓬勃兴起,以区块链为代表的新一代信息技术迅猛发展,现收集某地近5年区块链企业总数量相关数据,如下表
年份20172018201920202021
编号x12345
企业总数量y(单位:千个)2.1563.7278.30524.27936.224
(1)根据表中数据判断,(其中…为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由),并根据你的判断结果求y关于x的回归方程;
(2)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛.比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司获得此次信息化比赛的“优胜公司”.已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,若首场由甲乙比赛,求甲公司获得“优胜公司”的概率.
参考数据:(其中).
附:样本的最小二乘法估计公式为
解答题-问答题 | 适中(0.65) |
真题 名校
3 . 某公司为了解用户对其产品的满意度,从A、B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62738192958574645376
78869566977888827689
B地区:73836251914653736482
93489581745654766579

(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):

(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分低于70分70分到89分不低于90分
满意度等级不满意满意非常满意


记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
2016-12-03更新 | 11635次组卷 | 27卷引用:2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)
20-21高二上·云南·期中
解答题-问答题 | 较易(0.85) |
名校
4 . 全美数学竞赛(American Mathematics Competition, 简称AMC)共有25道选择题,每题6分,共150分.每道题有ABCDE共5个选项,只有一个正确选项.评分规则为:填写正确答案得6分,不填得2分,填错答案得0分.某考生考试快结束时,还余下2道题没有完成.若该考生随机选中5个选项中的某一个和不填这6种情况是等可能的.
(1)求他这2题恰好得到2分的概率;
(2)如果这2道题中,每道题均可随机猜一个答案填写或者不填,请从小到大列举出所有可能的得分.
2020-11-20更新 | 586次组卷 | 4卷引用:专题11.4 随机事件的概率与古典概型(精练)-2021年新高考数学一轮复习学与练
智能选题,一键自动生成优质试卷~
2011·安徽·高考真题
5 . 本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中的一个排列,求所需派出人员数目的分布列和均值(数字期望)
(3)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.
6 . 某工厂生产一种汽车的元件,该元件是经过ABC三道工序加工而成的,ABC三道工序加工的元件合格率分别为,已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其他的为废品,不进入市场.
(1)生产一个元件,求该元件为二等品的概率;
(2)从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.
7 . 一支担负勘探任务的队伍有若干个勘探小组和两类勘探人员,甲类人员应用某种新型勘探技术的精准率为0.6,乙类人员应用这种勘探技术的精准率为.每个勘探小组配备1名甲类人员与2名乙类人员,假设在执行任务中每位人员均有一次应用这种技术的机会且互不影响,记在执行任务中每个勘探小组能精准应用这种新型技术的人员数量为.
(1)证明:在各个取值对应的概率中,概率的值最大;
(2)在特殊的勘探任务中,每次只能派一个勘探小组出发,工作时间不超过半小时,如果半小时内无法完成任务,则重新派另一组出发.现在有三个勘探小组可派出,若小组能完成特殊任务的概率t,且各个小组能否完成任务相互独立.试分析以怎样的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.
2021-03-22更新 | 2855次组卷 | 5卷引用:湖南省长沙市长郡中学2021届高三下学期月考(七)数学试题
8 . 工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为的一个排列),求所需派出人员数目X的分布列和数学期望(结果用表示).
2020-11-02更新 | 301次组卷 | 2卷引用:福建省福州第一中学2021届高三上学期开学检测数学试题
9 . 有一个开房门的游戏,其玩法为:
盒中先放入两把钥匙和两把钥匙能够打开房门,不能打开房门.
每次从盒中随机取一把试开,试开后不放回钥匙.第一次打开房门后,关上门继续试开,第二次打开房门后停止抽取,称为进行了一轮游戏.
若每一轮取钥匙不超过三次,则该轮“成功”,否则为“失败”,如果某一轮“成功”,则游戏终止;若“失败”,则将所有钥匙重新放入盒中,并再放入一把钥匙,继续下一轮抽取,直至“成功”.
(1)有名爱好者独立参与这个游戏,记表示“成功”时抽取钥匙的轮次数,表示对应的人数,部分统计数据如下表:

若将作为关于的经验回归方程,估计抽取轮才“成功”的人数(人数精确到个位);
(2)由于时间关系,规定:进行游戏时,最多进行三轮,若均未“成功”也要终止游戏.求游戏要进行三轮的概率.
参考公式:最小二乘估计.
参考数据:取,其中.
2023-02-01更新 | 972次组卷 | 8卷引用:重庆市第八中学校2021-2022学年高二下学期期末数学试题
10 . 在箱子中有大小相同,仅颜色不同的小球共6个,其中红色小球2个,白色小球4个.现从箱子中每次随机取出一个小球,若取出的是白球,放回,并继续从箱子中随机取出一个小球;若取出的是红色小球,不放回,并继续从箱子中随机取出一个小球.直到取出2个红色小球结束.
(1)若在第一次取出的小球是红球的条件下,求取球4次结束的概率;
(2)求取球结束时,取球次数不超过3次的概率.
共计 平均难度:一般