组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 4 道试题
1 . 某区域中的物种拥有两个亚种(分别记为种和种).为了调查该区域中这两个亚种的数目,某生物研究小组计划在该区域中捕捉个物种,统计其中种的数目后,将捕获的生物全部放回,作为一次试验结果.重复进行这个试验共次,记第次试验中种的数目为随机变量.设该区域中种的数目为种的数目为,每一次试验均相互独立.
(1)求的分布列;
(2)记随机变量.已知
(ⅰ)证明:
(ⅱ)该小组完成所有试验后,得到的实际取值分别为.数据的平均值,方差.采用分别代替,给出的估计值.
2023-05-02更新 | 2836次组卷 | 9卷引用:湖北省星云联盟2023届高三下学期统一模拟考试Ⅱ数学试题
2 . 概率论中有很多经典的不等式,其中最著名的两个当属由两位俄国数学家马尔科夫和切比雪夫分别提出的马尔科夫(Markov)不等式和切比雪夫(Chebyshev)不等式.马尔科夫不等式的形式如下:
为一个非负随机变量,其数学期望为,则对任意,均有
马尔科夫不等式给出了随机变量取值不小于某正数的概率上界,阐释了随机变量尾部取值概率与其数学期望间的关系.当为非负离散型随机变量时,马尔科夫不等式的证明如下:
的分布列为其中,则对任意,其中符号表示对所有满足的指标所对应的求和.
切比雪夫不等式的形式如下:
设随机变量的期望为,方差为,则对任意,均有
(1)根据以上参考资料,证明切比雪夫不等式对离散型随机变量成立.
(2)某药企研制出一种新药,宣称对治疗某种疾病的有效率为.现随机选择了100名患者,经过使用该药治疗后,治愈的人数为60人,请结合切比雪夫不等式通过计算说明药厂的宣传内容是否真实可信.
2023-05-27更新 | 3329次组卷 | 13卷引用:吉林省东北师范大学附中2023届高三下学期七模数学试题
3 . 我们将服从二项分布的随机变量称为二项随机变量,服从正态分布的随机变量称为正态随机变量.概率论中有一个重要的结论是棣莫弗一拉普拉斯极限定理,它表明,若随机变量,当n充分大时,二项随机变量Y可以由正态随机变量X来近似,且正态随机变量X的期望和方差与二项随机变量Y的期望和方差相同.棣莫弗在1733年证明了的特殊情形,1812年,拉普拉斯对一般的p进行了证明.现抛掷一枚质地均匀的硬币100次,则利用正态分布近似估算硬币正面向上次数超过60次的概率为(       )(附:若,则
A.0.1587B.0.0228C.0.0027D.0.0014
2022-05-13更新 | 2472次组卷 | 21卷引用:8.3 分布列(精练)
4 . 为了解顺义区某中学高一年级学生身体素质情况,对高一年级的()班)班进行了抽测,采取如下方式抽样:每班随机各抽名学生进行身体素质监测.经统计,每班名学生中身体素质监测成绩达到优秀的人数散点图如下:(轴表示对应的班号,轴表示对应的优秀人数)

(1)若用散点图预测高一年级学生身体素质情况,从高一年级学生中任意抽测人,求该生身体素质监测成绩达到优秀的概率;
(2)若从以上统计的高一()班的名学生中抽出人,设表示人中身体素质监测成绩达到优秀的人数,求的分布列及其数学期望;
(3)假设每个班学生身体素质优秀的概率与该班随机抽到的名学生的身体素质优秀率相等.现在从每班中分别随机抽取名同学,用“”表示第班抽到的这名同学身体素质优秀,“”表示第班抽到的这名同学身体素质不是优秀.写出方差的大小关系(不必写出证明过程).
2022-04-14更新 | 1321次组卷 | 5卷引用:7.4.2 超几何分布 (精讲)
共计 平均难度:一般