组卷网 > 知识点选题 > 方差的期望表示
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 13 道试题
1 . 某人从地到地有路程接近的2条路线可以选择,其中第一条路线上有个路口,第二条路线上有个路口.
(1)若,第一条路线的每个路口遇到红灯的概率均为;第二条路线的第一个路口遇到红灯的概率为,第二个路口遇到红灯的概率为,从“遇到红灯次数的期望”考虑,哪条路线更好?请说明理由.
(2)已知;随机变量服从两点分布,且,.则,且.若第一条路线的第个路口遇到红灯的概率为,当选择第一条路线时,求遇到红灯次数的方差.
2024-01-22更新 | 825次组卷 | 4卷引用:专题21 概率与统计的综合运用(13大核心考点)(讲义)
2 . 已知,随机变量的分布列如下表所示:
0101
下列说法中正确的是(       
A.若,则
B.若,则
C.若,则
D.若,则
2023-02-23更新 | 789次组卷 | 6卷引用:中学生标准学术能力诊断性测试2022-2023学年上学期12月测试(新课改版)数学试题
2020·浙江·模拟预测
3 . 设,随机变量X的分布列是:

X

-1

1

2

P


则当最大时的a的值是
A.B.C.D.
2020-09-08更新 | 2604次组卷 | 15卷引用:考点39 均值与方差在生活中运用(讲解)-2021年高考数学复习一轮复习笔记
4 . 篮球运动员在比赛中每次罚球得分的规则是:命中得1分,不命中得0分.已知某篮球运动员罚球命中的概率为0.8,设其罚球一次的得分为,则(       
A.B.
C.D.
2023-07-10更新 | 583次组卷 | 3卷引用:北京市通州区2022-2023学年高二下学期期末质量检测数学试题
智能选题,一键自动生成优质试卷~
5 . 下列说法正确的有(       
A.两个随机变量的线性相关性越强,则相关系数的绝对值越接近于0
B.若是随机变量,则.
C.已知随机变量,若,则
D.设随机变量表示发生概率为的事件在一次随机试验中发生的次数,则
2022-02-06更新 | 797次组卷 | 4卷引用:安徽省亳州市第一中学2021-2022学年高二上学期元月月考数学试题
2021·浙江宁波·模拟预测
6 . 某中学高一年级和高二年级进行篮球比赛,赛制为3局2胜制,若比赛没有平局,且高二队每局获胜的概率都是,记比赛的最终局数为随机变量,则(       
A.B.
C.D.
2021-06-04更新 | 1201次组卷 | 7卷引用:【新教材精创】第七章 随机变量及其分布--复习与小结---B提高练
7 . 红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害.每只红铃虫的平均产卵数和平均温度有关.现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
平均温度/℃21232527293235
平均产卵数/个711212466115325
27.42981.2863.61240.182147.714
表中

(1)根据散点图判断,(其中为自然对数的底数)哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?(给出判断即可不必说明理由)并由判断结果及表中数据,求出关于的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.
(ⅰ)记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率.
(ⅱ)当取最大值时,记该地今后5年中,需要人工防治的次数为,求的数学期望和方差.
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为:.
2020-12-06更新 | 1104次组卷 | 15卷引用:2020届山东省日照第一中学高三上学期期中数学试题
8 . 下列命题中正确是(       
A.中位数就是第50百分位数
B.已知随机变量,且函数为偶函数,则
C.已知采用分层抽样得到的高三年级男生、女生各100名学生的身高情况为:男生样本平均数172,方差为120,女生样本平均数165,方差为120,则总体样本方差为130
D.已知随机变量,若,则
2023-09-06更新 | 235次组卷 | 2卷引用:山东省实验中学2024届高三第一次诊断考试数学试题变式题6-10
9 . 某袋中装有大小相同质地均匀的5个球,其中3个黑球和2个白球.从袋中随机取出2个球,记取出白球的个数为
(1)求的概率即
(2)求取出白球的数学期望和方差
2020-12-03更新 | 948次组卷 | 9卷引用:人教B版(2019) 选修第二册 过关检测 第四章 4.2.4 随机变量的数字特征 课时2
10 . 2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:
得分
频数2515020025022510050

(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元)2040
概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;②若,则
2020-01-11更新 | 987次组卷 | 4卷引用:山东省德州市夏津第一中学2019-2020学年高三上学期12月月考数学试卷
共计 平均难度:一般