1 . 设是定义在R上的函数,其导函数为.
(1)若函数,求的值;
(2)若是奇函数,当时,恒有,求不等式的解集;
(3)若对于任意的实数都有,且,若关于的不等式的解集中恰有唯一的一个整数,求实数的取值范围.
(1)若函数,求的值;
(2)若是奇函数,当时,恒有,求不等式的解集;
(3)若对于任意的实数都有,且,若关于的不等式的解集中恰有唯一的一个整数,求实数的取值范围.
您最近一年使用:0次
名校
2 . ,且.
(1)方程在有且仅有一个解,求的取值范围.
(2)设,对,总,使成立,求的范围.
(3)若与的图象关于对称,求不等式的解集.
(1)方程在有且仅有一个解,求的取值范围.
(2)设,对,总,使成立,求的范围.
(3)若与的图象关于对称,求不等式的解集.
您最近一年使用:0次
2023-05-21更新
|
1297次组卷
|
6卷引用:江西省吉安市双校联盟2022-2023学年高一下学期期中考试数学试题
江西省吉安市双校联盟2022-2023学年高一下学期期中考试数学试题(已下线)模块四 专题2 重组综合练(江西)(北师版高一期中)辽宁省沈阳市第十一中学2022-2023学年高一下学期4月月考数学试题(已下线)专题5.9 三角函数全章八类必考压轴题-举一反三系列(已下线)专题5.4 三角函数的图象与性质-举一反三系列(已下线)第七章 三角函数(压轴题专练)-单元速记·巧练(沪教版2020必修第二册)
名校
3 . 已知不等式恰有2个非负整数解,则实数的取值范围( )
A. | B. | C. | D. |
您最近一年使用:0次
2024-08-29更新
|
509次组卷
|
2卷引用:安徽省马鞍山中加双语学校2022-2023学年高二下学期数学期中考试试题
名校
解题方法
4 . 已知(其中为自然对数的底数),则下列结论正确的是( )
A.为函数的导函数,则方程有3个不等的实数解 |
B. |
C.若对任意,不等式恒成立,则实数的最大值为-1 |
D.若,则的最大值为 |
您最近一年使用:0次
2024-01-29更新
|
1892次组卷
|
3卷引用:四川省眉山市东坡区永寿高级中学2023-2024学年高二下学期4月期中联考数学试题
四川省眉山市东坡区永寿高级中学2023-2024学年高二下学期4月期中联考数学试题吉林省长春市五校2023-2024学年高三上学期联合模拟考试数学试题(已下线)2024年高考数学全真模拟卷08(新题型地区专用)
5 . 已知函数,,给出下列四个结论:
①函数在区间上单调递减;
②函数的最大值是;
③若关于的方程有且只有一个实数解,则的最小值为;
④若对于任意实数a,b,不等式都成立,则的取值范围是.
其中所有正确结论的序号是_______ .
①函数在区间上单调递减;
②函数的最大值是;
③若关于的方程有且只有一个实数解,则的最小值为;
④若对于任意实数a,b,不等式都成立,则的取值范围是.
其中所有正确结论的序号是
您最近一年使用:0次
名校
6 . 若关于的不等式的解集中恰有2个整数,则的取值范围是( )
A. | B. |
C. | D. |
您最近一年使用:0次
2023-06-18更新
|
569次组卷
|
4卷引用:四川省成都市蓉城名校联盟2022-2023学年高二下学期期中联考数学文科试题
名校
解题方法
7 . 已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是( )
A. | B. | C. | D. |
您最近一年使用:0次
2020-12-03更新
|
2028次组卷
|
21卷引用:四川省眉山市东坡区永寿高级中学2019-2020学年高二下学期期中考试数学(理)试题
四川省眉山市东坡区永寿高级中学2019-2020学年高二下学期期中考试数学(理)试题四川省眉山市东坡区永寿高级中学2019-2020学年高二下学期期中考试数学(文)试题甘肃省兰州市西北师范大学附属中学2020-2021学年高三数学第一学期期中试题安徽省合肥市第一中学2023-2024学年高二下学期期中联考数学试题【全国百强校】湖南省长沙市长郡中学2018届高考模拟卷(二)理科数学试题【全国校级联考】山东、湖北部分重点中学2018届高三高考冲刺模拟试卷(五) 文科数学试题四川省华蓥市第一中学2019届高三入学调研考试理科数学试题【全国校级联考】安徽省淮北部分校2019届高三上学期开学联考理科数学试题【省级联考】福建省2019届高中毕业班数学学科备考关键问题指导系列数学(文科)适应性练习(二)福建省福州市八县(市)一中2018-2019学年高二下学期期末联考数学(理)试题2020届安徽省合肥一中高三上学期11月阶段性考试数学(理)试题2020届重庆市名校联盟高三二诊数学(文)试题(已下线)重难点 06 函数与导数-2021年高考数学(理)【热点·重点·难点】专练(已下线)专题03 利用导数解不等式 第一篇 热点、难点突破篇(练) - 2021年高考二轮复习讲练测(浙江专用)广西柳州市2021届高三第一次模拟考试数学(理)试题江苏省南京市中华中学2021-2022学年高三上学期期初数学试题四川省广安代市中学校2021-2022学年高三上学期入学考试数学(理)试题(已下线)专题5.3 导数及其应用 章末检测3(难)-【满分计划】2021-2022学年高二数学阶段性复习测试卷(苏教版2019选择性必修第一册)(已下线)专题7.3 期末押题检测卷(考试范围:选择性必修第一册)3(难)-【满分计划】2021-2022学年高二数学阶段性复习测试卷(苏教版2019选择性必修第一册)湖南省长沙市雅礼中学2022-2023学年高二下学期3月第一次月考数学试题(已下线)大招26整数解问题
名校
解题方法
8 . 已知若,则称为的原函数,此时所有的原函数为,其中为常数,如:,则(为常数).现已知函数的导函数为且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是
A. | B. | C. | D. |
您最近一年使用:0次
9 . 已知函数.
(1)若是的极值点,求的单调区间;
(2)若关于的方程恰有一个解,求a的取值范围.
(1)若是的极值点,求的单调区间;
(2)若关于的方程恰有一个解,求a的取值范围.
您最近一年使用:0次
2022-09-29更新
|
548次组卷
|
8卷引用:青海省西宁市湟中区2022-2023学年高三上学期期中考试数学(理)试题
名校
10 . 已知函数在处取得极值0.
(1)求实数,的值;
(2)若关于的方程在区间上恰有2个不同的实数解,求的取值范围;
(3)设函数,若,总有成立,求的取值范围.
(1)求实数,的值;
(2)若关于的方程在区间上恰有2个不同的实数解,求的取值范围;
(3)设函数,若,总有成立,求的取值范围.
您最近一年使用:0次
2022-11-10更新
|
611次组卷
|
3卷引用:天津市部分区2022-2023学年高三上学期期中数学试题