组卷网 > 章节选题 > 选修2-3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 10 道试题
1 . 等高堆积条形图是一种数据可视化方式,能够清晰呈现多个变量的数据并进行比较,这种类型图表将多个条形图堆积在一起并用颜色进行区分,形成一条整体条形图,每个条形图的高度表示对应变量的值,不同颜色表示不同变量,能够更好的理解每个变量在总体中的占比.北方的冬天室外温度极低,如果轻薄、保暖的石墨烯发热膜能用在衣服上,那么可爱的医务工作者们在冬季行动会更方便.石墨烯发热膜的制作如下:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨中分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现在有材料、材料可供选择,研究人员对附着在材料、材料上的石墨各做了50次再结晶试验,得到如下等高堆积条形图.


材料

材料

合计

试验成功




试验失败




合计




单位:次
(1)根据等高堆积条形图,填写列联表,并判断是否有的把握认为试验的结果与材料有关;
(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV胶层;②石墨烯层;③表面封装层.第一、二环节生产合格的概率均为,第三环节生产合格的概率为,且各生产环节相互独立.已知生产1吨石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,第三环节的修复费用为4000元,其余环节修复费用均为2000元.试问如何定价(单位:万元),才能实现每生产1吨石墨烯发热膜获利不低于1万元的目标?(精确到0.001)
附:,其中.

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2 . 为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立

(1)填写下面的列联表(单位:只),并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.
抗体指标值合计
小于60不小于60
有抗体
没有抗体
合计
参考公式:(其中为样本容量)
参考数据:
0.500.400.250.150.1000.0500.025
0.4550.7081.3232.0722.7063.8415.024
(2)为检验疫苗二次接种的免疫体抗性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.
①用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率
②以①中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记个人注射2次疫苗后产生抗体的数量为随机变量.试验后统计数据显示,当时,取最大值,求参加人体接种试验的人数.
3 . 李老师对高二两个班级的105名学生进行了数学学科的学情调查,数据如下:在75名男生中,有45名男生对数学很感兴趣;在30名女生中,有10名女生对数学很感兴趣;其余学生对数学兴趣一般.
(1)填写下面列联表,并根据列联表判断能否在犯错误的概率不超过0.025的前提下认为“对数学学科是否很感兴趣与性别有关系”?

男生

女生

总计

很感兴趣

兴趣一般

合计

105

(2)李老师为进一步了解情况,对两个班级的各个学习小组进行抽样调查,每组随机抽3人,已知小明和小芳2名学生所在的学习小组有5人,求抽到的3名学生中,小明和小芳没有同时被抽到的概率.
附:

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.828

2021-08-19更新 | 176次组卷 | 1卷引用:广东省佛山市南海区2020-2021学年高二下学期期末数学试题
4 . 武汉热干面既是中国四大名面之一,也是湖北武汉最出名的小吃之一.某热干面店铺连续10天的销售情况如下(单位:份):
天数12345678910
套餐一12010014014012070150120110130
套餐二809090605090708090100
(1)分别求套餐一、套餐二的均值、方差,并判断两种套餐销售的稳定情况;
(2)假定在连续10天中每位顾客只购买了一份,根据图表内容填写下列列联表,并据此判断能否有95%的把握认定顾客性别与套餐选择有关?
顾客套餐套餐一套餐二合计
男顾客400
女顾客500
合计
附:
0.100.050.0250.010
2.7063.8415.0246.635
5 . 随着人们生活水平的日益提高,人们对孩子的培养也愈发重视,各种兴趣班如雨后春笋般出现在我们日常生活中. 据调查,3~6岁的幼儿大部分参加的是艺术类,其中舞蹈和绘画比例最大,就参加兴趣班的男女比例而言,女生参加兴趣班的比例远远超过男生. 随机调查了某区100名3~6岁幼儿在一年内参加舞蹈或绘画兴趣班的情况,得到如下表格:
不参加舞蹈且不参
加绘画兴趣班
参加舞蹈不参加
绘画兴趣班
参加绘画不参加
舞蹈兴趣班
参加舞蹈且参加
绘画兴趣班

人数

14

35

26

25

(Ⅰ)估计该区3~6岁幼儿参加舞蹈兴趣班的概率;
(Ⅱ)通过所调查的100名3~6岁幼儿参加兴趣班的情况,填写下面列联表,并根据列联表判断是否有99. 9%的把握认为参加舞蹈兴趣班与性别有关.

参加舞蹈兴趣班

不参加舞蹈兴趣班

总计

男生

10

女生

70

总计

附:.

0. 10

0. 05

0. 025

0. 010

0. 005

0. 001

2. 706

3. 841

5. 024

6. 635

7. 879

10. 828

2019-07-18更新 | 173次组卷 | 1卷引用:广东省佛山市顺德区2018-2019学年高二下学期期末数学理试题
解答题-问答题 | 较易(0.85) |
6 . 某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲者都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷份数情况如下表:

学科

语文

数学

英语

理综

文综

问卷份数

用分层抽样的方法从这一天的所有问卷中抽取份进行统计,结果如下表:

满意

一般

不满意

语文

数学

1

英语

理综

文综

(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出 人进行家访,求这 人中选择的是理综讲座的人数的分布列.
2018-03-06更新 | 298次组卷 | 1卷引用:广东省佛山市顺德区2018届高三下学期学情调研考试数学(理)试题
单选题 | 适中(0.65) |
真题 名校
解题方法
7 . 将1,2,3填入的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有
A.6种B.12种C.24种D.48种
2016-11-30更新 | 2609次组卷 | 10卷引用:广东省顺德区北滘中学2023-2024学年高二下学期期中考试数学试卷
填空题-单空题 | 较易(0.85) |
真题 名校
8 . 的展开式中的系数为________.(用数字填写答案)
2016-12-03更新 | 15294次组卷 | 29卷引用:【区级联考】广东省佛山市禅城区2019届高三统一调研考试(二)理科数学试卷
9 . 在国家大力发展新能源汽车产业的政策下,我国新能源汽车的产销量高速增长. 已知某地区2014年底到2021年底新能源汽车保有量的数据统计表如下:
年份(年)20142015201620172018201920202021
年份代码x12345678
保有量y/千辆1.952.924.386.589.8715.0022.5033.70
参考数据:,其中

(1)根据统计表中的数据画出散点图(如图),请判断哪一个更适合作为y关于x的经验回归方程(给出判断即可,不必说明理由),并根据你的判断结果建立y关于x的经验回归方程:
(2)假设每年新能源汽车保有量按(1)中求得的函数模型增长,且传统能源汽车保有量每年下降的百分比相同.若2021年底该地区传统能源汽车保有量为500千辆,预计到2026年底传统能源汽车保有量将下降10%.试估计到哪一年底新能源汽车保有量将超过传统能源汽车保有量.
参考公式:对于一组数据v1),),…,,其经验回归直线的斜率和截距的最小二乘估计公式分别为
2022-10-12更新 | 1331次组卷 | 13卷引用:广东省佛山市顺德区第一中学2023届高三上学期9月月考数学试题
10 . 某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:

如果:尺寸数据在内的零件为合格品,频率作为概率.
(1)从产品中随机抽取件,合格品的个数为,求的分布列与期望:
(2)为了提高产品合格率,现提出两种不同的改进方案进行试验,若按方案进行试验后,随机抽取件产品,不合格个数的期望是:若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?
共计 平均难度:一般