组卷网 > 章节选题 > 选修2-3
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 269 道试题
1 . 一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:

不够良好

良好

病例组

40

60

对照组

10

90

(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R
(ⅰ)证明:
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.

0.050

0.010

0.001

k

3.841

6.635

10.828

2022-06-07更新 | 53466次组卷 | 52卷引用:辽宁新高考联盟(点石联考)2023-2024学年高二下学期3月联合考试数学试题
2 . 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i12345678910总和
根部横截面积0.040.060.040.080.080.050.050.070.070.060.6
材积量0.250.400.220.540.510.340.360.460.420.403.9
并计算得
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数
2022-06-07更新 | 48116次组卷 | 63卷引用:辽宁新高考联盟(点石联考)2023-2024学年高二下学期3月联合考试数学试题
3 . 马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,,…,那么时刻的状态的条件概率仅依赖前一状态,即
现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.
假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B元,赌徒停止赌博.记赌徒的本金为,赌博过程如下图的数轴所示.

当赌徒手中有n元()时,最终输光的概率为,请回答下列问题:
(1)请直接写出的数值.
(2)证明是一个等差数列,并写出公差d
(3)当时,分别计算时,的数值,并结合实际,解释当时,的统计含义.
2023-04-06更新 | 10488次组卷 | 20卷引用:辽宁省沈阳市第二中学2024届高三下学期开学考试数学试题
解答题-应用题 | 适中(0.65) |
真题 名校
4 . 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
2020-07-08更新 | 42698次组卷 | 103卷引用:辽宁省大连市2023-2024学年高一上学期末模拟考试数学试题
5 . 某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过不超过
第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:

2018-06-09更新 | 39906次组卷 | 89卷引用:辽宁省沈阳市五校协作体2019-2020学年高三上学期期中考试数学(文)试题
6 . 2023年,全国政协十四届一次会议于3月4日下午3时在人民大会堂开幕,3月11日下午闭幕,会期7天半;十四届全国人大一次会议于3月5日上午开幕,13日上午闭幕,会期8天半.为调查学生对两会相关知识的了解情况,某高中学校开展了两会知识问答活动,现从全校参与该活动的学生中随机抽取320名学生,他们的得分(满分100分)的频率分布折线图如下.

(1)若此次知识问答的得分,用样本来估计总体,设分别为被抽取的320名学生得分的平均数和标准差,求的值;
(2)学校对这些被抽取的320名学生进行奖励,奖励方案如下:用频率估计概率,得分小于或等于55的学生获得1次抽奖机会,得分高于55的学生获得2次抽奖机会.假定每次抽奖抽到价值10元的学习用品的概率为,抽到价值20元的学习用品的概率为.从这320名学生中任取一位,记该同学在抽奖活动中获得学习用品的价值总额为元,求的分布列和数学期望(用分数表示),并估算此次抽奖要准备的学习用品的价值总额.
参考数据:.
2023-04-09更新 | 3546次组卷 | 11卷引用:辽宁省县级重点高中联合体2023届高三二模数学试题
7 . 在统计学的实际应用中,除了中位数外,经常使用的是25%分位数(简称为第一四分位数)与75%分位数(简称为第三四分位数),四分位数应用于统计学的箱型图绘制,是统计学中分位数的一种,即把所有数值由小到大排列,并分成四等份,处于三个分割点的数值就是四分位数,箱型图中“箱体”的下底边对应数据为第一四分位数,上底边对应数据为第三四分位数,中间的线对应中位数,已知甲、乙两班人数相同,在一次测试中两班成绩箱型图如图所示.

(1)由此图估计甲、乙两班平均分较高的班级是哪个?(直接给出结论即可,不用说明理由)
(2)若在两班中随机抽取一人,发现他的分数小于128分,则求该同学来自甲班和乙班的概率分别是多少?
(3)据统计两班中高于140分共10人,其中甲班6人,乙班4人,从中抽取了3人作学习经验交流,3人中来自乙班的人数为,求的分布列.
2024-03-01更新 | 2854次组卷 | 4卷引用:东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)2023-2024学年高三下学期第一次联合模拟考数学试题
8 . 为弘扬中国共产党百年奋斗的光辉历程,某校团委决定举办“中国共产党党史知识”竞赛活动.竞赛共有两类试题,每类试题各10题,其中每答对1道类试题得10分;每答对1道类试题得20分,答错都不得分.每位参加竞赛的同学从这两类试题中共抽出3道题回答(每道题抽后不放回).已知某同学类试题中有7道题能答对,而他答对各道类试题的概率均为
(1)若该同学只抽取3道类试题作答,设表示该同学答这3道试题的总得分,求的分布和期望;
(2)若该同学在类试题中只抽1道题作答,求他在这次竞赛中仅答对1道题的概率.
2023-11-24更新 | 2910次组卷 | 9卷引用:辽宁省大连市第八中学2023-2024学年高二下学期4月月考数学试题
9 . 某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为,且各轮问题能否回答正确互不影响.
(1)求该选手进入第四轮才被淘汰的概率;
(2)求该选手至多进入第三轮考核的概率.
10 . 4月23日是联合国教科文组织确定的“世界读书日”.为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了500名高一学生进行在线调查,得到了这500名学生的日平均阅读时间(单位:小时),并将样本数据分成九组,绘制成如图所示的频率分布直方图.

(1)从这500名学生中随机抽取一人,日平均阅读时间在内的概率;
(2)为进一步了解这500名学生数字媒体阅读时间和纸质图书阅读时间的分配情况,从日平均阅读时间在三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人,记日平均阅读时间在内的学生人数为X,求X的分布列和数学期望;
(3)以样本的频率估计概率,从该地区所有高一学生中随机抽取10名学生,用表示这10名学生中恰有k名学生日平均阅读时间在内的概率,其中,1,2,…,10.当最大时,写出k的值.(只需写出结论)
2022-06-02更新 | 5968次组卷 | 15卷引用:辽宁省锦州市辽西育明高级中学2022-2023学年高二下学期第一次阶段性数学试题
共计 平均难度:一般