名校
解题方法
1 . 设函数,.记,,.对于D的非空子集A,若对任意,都有,则称函数在集合A上封闭.
(1)若,,,分别判断函数和是否在集合A上封闭;
(2)设,,区间(其中),若函数在集合B上封闭,求的最大值;
(3)设,,若函数的定义域为,函数和的图象都是连续的曲线,且函数在区间(其中)上封闭,证明:存在,使得.
(1)若,,,分别判断函数和是否在集合A上封闭;
(2)设,,区间(其中),若函数在集合B上封闭,求的最大值;
(3)设,,若函数的定义域为,函数和的图象都是连续的曲线,且函数在区间(其中)上封闭,证明:存在,使得.
您最近一年使用:0次
名校
2 . 已知,函数在点处的切线均经过坐标原点,则( )
A. | B. | C. | D. |
您最近一年使用:0次
2024-02-04更新
|
3201次组卷
|
8卷引用:上海市浦东新区上海实验学校2024届高三下学期开学考试数学试题
上海市浦东新区上海实验学校2024届高三下学期开学考试数学试题浙江省温州市2024届高三上学期期末考试数学试题湖南省2024届高三数学新改革提高训练五(九省联考题型)安徽省阜阳市阜阳一中2023-2024学年高二下学期开学检测数学试题(已下线)新题型01 新高考新结构二十一大考点汇总-3(已下线)黄金卷02(2024新题型)甘肃省兰州市西北师范大学附属中学2024届高三第三次诊断考试数学试题辽宁省IC联盟高二下学期6月阶段性质量检测数学试题
名校
3 . 若对任意的在区间上不存在最小值,且对任意正整数n,当时有,
(1)比较与的大小关系;
(2)判断是否为上的增函数,并说明理由;
(3)证明:当时,.
(1)比较与的大小关系;
(2)判断是否为上的增函数,并说明理由;
(3)证明:当时,.
您最近一年使用:0次
名校
解题方法
4 . 设函数的定义域为,给定区间,若存在,使得,则称函数为区间上的“均值函数”,为函数的“均值点”.
(1)试判断函数是否为区间上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;
(2)已知函数是区间上的“均值函数”,求实数的取值范围;
(3)若函数(常数)是区间上的“均值函数”,且为其“均值点”.将区间任意划分成()份,设分点的横坐标从小到大依次为,记,,.再将区间等分成()份,设等分点的横坐标从小到大依次为,记.求使得的最小整数的值.
(1)试判断函数是否为区间上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;
(2)已知函数是区间上的“均值函数”,求实数的取值范围;
(3)若函数(常数)是区间上的“均值函数”,且为其“均值点”.将区间任意划分成()份,设分点的横坐标从小到大依次为,记,,.再将区间等分成()份,设等分点的横坐标从小到大依次为,记.求使得的最小整数的值.
您最近一年使用:0次
2023-12-14更新
|
725次组卷
|
5卷引用:上海市金山区2024届高三上学期质量监控数学试题
上海市金山区2024届高三上学期质量监控数学试题(已下线)专题09 导数(三大类型题)15区新题速递(已下线)专题03 函数(三大类型题)15区新题速递广东省广州市第二中学2023-2024学年高二下学期期中考试数学试题福建省泉州实验中学2024-2025学年高三上学期10月月考数学试题
5 . 已知与都是定义在上的函数,若对任意,,当时,都有,则称是的一个“控制函数”.
(1)判断是否为函数的一个控制函数,并说明理由;
(2)设的导数为,,求证:关于的方程在区间上有实数解;
(3)设,函数是否存在控制函数?若存在,请求出的所有控制函数;若不存在,请说明理由.
(1)判断是否为函数的一个控制函数,并说明理由;
(2)设的导数为,,求证:关于的方程在区间上有实数解;
(3)设,函数是否存在控制函数?若存在,请求出的所有控制函数;若不存在,请说明理由.
您最近一年使用:0次
名校
6 . 已知函数,,下列四个结论中,正确 的结论有( )
①方程有2个不同的实数解;
②方程有2个不同的实数解;
③方程有且只有1个实数解;
④当时,方程有2个不同的实数解.
①方程有2个不同的实数解;
②方程有2个不同的实数解;
③方程有且只有1个实数解;
④当时,方程有2个不同的实数解.
A.0个 | B.1个 | C.2个 | D.3个 |
您最近一年使用:0次
名校
解题方法
7 . 已知函数给出下列四个结论:
①若有最小值,则的取值范围是;
②当时,若无实根,则的取值范围是;
③当时,不等式的解集为;
④当时,若存在,满足,则.
其中,所有正确结论的序号为__________ .
①若有最小值,则的取值范围是;
②当时,若无实根,则的取值范围是;
③当时,不等式的解集为;
④当时,若存在,满足,则.
其中,所有正确结论的序号为
您最近一年使用:0次
2023-11-02更新
|
1131次组卷
|
6卷引用:上海市实验学校2023-2024学年高三下学期四模数学试题
8 . 对于函数,若实数满足,其中F、D为非零实数,则称为函数的“笃志点”.
(1)若,求函数的“笃志点”;
(2)已知函数,且函数有且只有3个“笃志点”,求实数a的取值范围;
(3)定义在R上的函数满足:存在唯一实数m,对任意的实数x,使得恒成立或恒成立.对于有序实数对,讨论函数“笃志点”个数的奇偶性,并说明理由.
(1)若,求函数的“笃志点”;
(2)已知函数,且函数有且只有3个“笃志点”,求实数a的取值范围;
(3)定义在R上的函数满足:存在唯一实数m,对任意的实数x,使得恒成立或恒成立.对于有序实数对,讨论函数“笃志点”个数的奇偶性,并说明理由.
您最近一年使用:0次
2023-10-26更新
|
774次组卷
|
2卷引用:上海市复旦大学附属中学2024届高三上学期10月月考数学试题
名校
9 . 已知函数的图象相邻两条对称轴间的距离为,且过点.
(1)若函数是偶函数,求的最小值;
(2)令,记函数在上的零点从小到大依次为、、、,求的值;
(3)设函数,,如果对于定义域D内的任意实数,对于给定的非零常数,总存在非零常数,若恒有成立,则称函数是上的级周期函数,周期为.是否存在非零实数,使函数是上的周期为的级周期函数?请证明你的结论.
(1)若函数是偶函数,求的最小值;
(2)令,记函数在上的零点从小到大依次为、、、,求的值;
(3)设函数,,如果对于定义域D内的任意实数,对于给定的非零常数,总存在非零常数,若恒有成立,则称函数是上的级周期函数,周期为.是否存在非零实数,使函数是上的周期为的级周期函数?请证明你的结论.
您最近一年使用:0次
2023-06-16更新
|
563次组卷
|
4卷引用:【巩固卷】期中测评卷 单元测试A-沪教版(2020)必修第二册
名校
10 . 已知关于的方程(为常数且)的一个根为(i为虚数单位),关于的函数的图象与坐标轴恰有2个交点,则实数值为______ .
您最近一年使用:0次