组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 20 道试题
1 . 设函数.记.对于D的非空子集A,若对任意,都有,则称函数在集合A上封闭.
(1)若,分别判断函数是否在集合A上封闭;
(2)设,区间(其中),若函数在集合B上封闭,求的最大值;
(3)设,若函数的定义域为,函数的图象都是连续的曲线,且函数在区间(其中)上封闭,证明:存在,使得.
2024-08-05更新 | 232次组卷 | 2卷引用:上海市复旦大学附属中学2023-2024学年高一上学期期末考试数学试题(A卷)
3 . 若对任意的在区间上不存在最小值,且对任意正整数n,当时有
(1)比较的大小关系;
(2)判断是否为上的增函数,并说明理由;
(3)证明:当时,
2024-01-31更新 | 280次组卷 | 1卷引用:上海市上海中学2023-2024学年高一上学期期末考试数学试题
4 . 设函数的定义域为,给定区间若存在,使得,则称函数为区间上的“均值函数”,为函数的“均值点”
(1)试判断函数是否为区间上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;
(2)已知函数是区间上的“均值函数”,求实数的取值范围;
(3)若函数(常数)是区间上的“均值函数”,且为其“均值点”将区间任意划分成)份,设分点的横坐标从小到大依次为,记再将区间等分成)份,设等分点的横坐标从小到大依次为,记求使得的最小整数的值
2023-12-14更新 | 725次组卷 | 5卷引用:上海市金山区2024届高三上学期质量监控数学试题
智能选题,一键自动生成优质试卷~
5 . 已知都是定义在上的函数,若对任意,当时,都有,则称的一个“控制函数”.
(1)判断是否为函数的一个控制函数,并说明理由;
(2)设的导数为,求证:关于的方程在区间上有实数解;
(3)设,函数是否存在控制函数?若存在,请求出的所有控制函数;若不存在,请说明理由.
2023-12-12更新 | 814次组卷 | 6卷引用:上海市虹口区2024届高三上学期期终学生学习能力诊断测试数学试题
6 . 已知函数,下列四个结论中,正确的结论有(       
①方程有2个不同的实数解;
②方程有2个不同的实数解;
③方程有且只有1个实数解;
④当时,方程有2个不同的实数解.
A.0B.1C.2D.3
2023-11-25更新 | 786次组卷 | 5卷引用:上海市格致中学2023-2024学年高三上学期期中考试数学试卷
7 . 已知函数给出下列四个结论:
①若有最小值,则的取值范围是
②当时,若无实根,则的取值范围是
③当时,不等式的解集为
④当时,若存在,满足,则.
其中,所有正确结论的序号为__________.
8 . 对于函数,若实数满足,其中FD为非零实数,则称为函数的“笃志点”.
(1)若,求函数的“笃志点”;
(2)已知函数,且函数有且只有3个“笃志点”,求实数a的取值范围;
(3)定义在R上的函数满足:存在唯一实数m,对任意的实数x,使得恒成立或恒成立.对于有序实数对,讨论函数笃志点”个数的奇偶性,并说明理由.
9 . 已知函数的图象相邻两条对称轴间的距离为,且过点.
(1)若函数是偶函数,求的最小值;
(2)令,记函数上的零点从小到大依次为,求的值;
(3)设函数,如果对于定义域D内的任意实数,对于给定的非零常数,总存在非零常数,若恒有成立,则称函数上的级周期函数,周期为.是否存在非零实数,使函数上的周期为级周期函数?请证明你的结论.
10 . 已知关于的方程为常数且)的一个根为(i为虚数单位),关于的函数的图象与坐标轴恰有2个交点,则实数值为______.
2022-12-02更新 | 127次组卷 | 1卷引用:上海市复旦大学附属中学2022-2023学年高二上学期9月月考数学试题
共计 平均难度:一般