名校
解题方法
1 . 设函数,.记,,.对于D的非空子集A,若对任意,都有,则称函数在集合A上封闭.
(1)若,,,分别判断函数和是否在集合A上封闭;
(2)设,,区间(其中),若函数在集合B上封闭,求的最大值;
(3)设,,若函数的定义域为,函数和的图象都是连续的曲线,且函数在区间(其中)上封闭,证明:存在,使得.
(1)若,,,分别判断函数和是否在集合A上封闭;
(2)设,,区间(其中),若函数在集合B上封闭,求的最大值;
(3)设,,若函数的定义域为,函数和的图象都是连续的曲线,且函数在区间(其中)上封闭,证明:存在,使得.
您最近一年使用:0次
名校
2 . 已知,函数在点处的切线均经过坐标原点,则( )
A. | B. | C. | D. |
您最近一年使用:0次
2024-02-04更新
|
3201次组卷
|
8卷引用:安徽省阜阳市阜阳一中2023-2024学年高二下学期开学检测数学试题
安徽省阜阳市阜阳一中2023-2024学年高二下学期开学检测数学试题(已下线)新题型01 新高考新结构二十一大考点汇总-3上海市浦东新区上海实验学校2024届高三下学期开学考试数学试题甘肃省兰州市西北师范大学附属中学2024届高三第三次诊断考试数学试题辽宁省IC联盟高二下学期6月阶段性质量检测数学试题浙江省温州市2024届高三上学期期末考试数学试题湖南省2024届高三数学新改革提高训练五(九省联考题型)(已下线)黄金卷02(2024新题型)
名校
解题方法
3 . 已知函数满足:,,,,,则( )
A.为奇函数 | B. |
C.方程有三个实根 | D.在上单调递增 |
您最近一年使用:0次
2024-01-25更新
|
672次组卷
|
4卷引用:辽宁省大连市第二十四中学2023-2024学年高一下学期5月期中数学试题
辽宁省大连市第二十四中学2023-2024学年高一下学期5月期中数学试题(已下线)专题03y=Asin(ωx+φ)的综合性质期末8种常考题型归类-《期末真题分类汇编》(人教B版2019必修第三册)浙江省温州市2023-2024学年高一上学期期末教学质量统一检测数学试题(A卷)江西省宜春市丰城中学2023-2024学年高一下学期4月期中考试数学试题
4 . 已知函数,且对恒成立,则( )
A. |
B.的图象关于点对称 |
C.若方程在上有2个实数解,则 |
D.的图象与直线恰有5个交点 |
您最近一年使用:0次
2023-12-29更新
|
1203次组卷
|
7卷引用:河北省石家庄市部分重点高中2024届高三上学期期末数学试题
河北省石家庄市部分重点高中2024届高三上学期期末数学试题河南省驻马店市部分学校2024届高三上学期期末联考数学试题(已下线)模块三 专题1 题型突破篇 小题入门夯实练(1)期末终极研习室(2023-2024学年第一学期)高三广东省广州市广东实验中学2024届高三上学期大湾区数学冲刺卷(一)辽宁省辽阳市2024届高三上学期期末数学试题河南省驻马店市2023-2024学年高三上学期期末考试数学试卷广东省部分学校2023-2024学年高三上学期12月月考数学试题
名校
5 . 设是函数定义域的一个子集,若存在,使得成立,则称是的一个“准不动点”,也称在区间上存在准不动点.已知.
(1)若,求函数的准不动点;
(2)若函数在区间上存在准不动点,求实数的取值范围.
(1)若,求函数的准不动点;
(2)若函数在区间上存在准不动点,求实数的取值范围.
您最近一年使用:0次
2023-12-15更新
|
925次组卷
|
7卷引用:北京市十一学校2022-2023学年高一(直升班)上学期第2学段IID教与学诊断(期末)数学试题
6 . 已知与都是定义在上的函数,若对任意,,当时,都有,则称是的一个“控制函数”.
(1)判断是否为函数的一个控制函数,并说明理由;
(2)设的导数为,,求证:关于的方程在区间上有实数解;
(3)设,函数是否存在控制函数?若存在,请求出的所有控制函数;若不存在,请说明理由.
(1)判断是否为函数的一个控制函数,并说明理由;
(2)设的导数为,,求证:关于的方程在区间上有实数解;
(3)设,函数是否存在控制函数?若存在,请求出的所有控制函数;若不存在,请说明理由.
您最近一年使用:0次
名校
7 . 已知函数,,下列四个结论中,正确 的结论有( )
①方程有2个不同的实数解;
②方程有2个不同的实数解;
③方程有且只有1个实数解;
④当时,方程有2个不同的实数解.
①方程有2个不同的实数解;
②方程有2个不同的实数解;
③方程有且只有1个实数解;
④当时,方程有2个不同的实数解.
A.0个 | B.1个 | C.2个 | D.3个 |
您最近一年使用:0次
名校
解题方法
8 . 已知函数给出下列四个结论:
①若有最小值,则的取值范围是;
②当时,若无实根,则的取值范围是;
③当时,不等式的解集为;
④当时,若存在,满足,则.
其中,所有正确结论的序号为__________ .
①若有最小值,则的取值范围是;
②当时,若无实根,则的取值范围是;
③当时,不等式的解集为;
④当时,若存在,满足,则.
其中,所有正确结论的序号为
您最近一年使用:0次
2023-11-02更新
|
1131次组卷
|
6卷引用:北京市第一零一中学2024届高三上学期10月月考数学试题
名校
9 . 已知,下列说法正确的是( )
A.时, |
B.若方程有两个根,则 |
C.若直线与有两个交点,则或 |
D.函数有3个零点 |
您最近一年使用:0次
2023-09-23更新
|
1390次组卷
|
5卷引用: 吉林省长春市东北师范大学附属中学2023-2024学年高三上学期第一次摸底考试数学试题
吉林省长春市东北师范大学附属中学2023-2024学年高三上学期第一次摸底考试数学试题广东省阳江市2023-2024学年高二上学期期中数学试题(已下线)第2章 直线和圆的方程单元测试能力卷-2023-2024学年高二数学上学期人教A版(2019)选择性必修第一册(已下线)专题02 直线和圆的方程(5)(已下线)专题17 直线与圆小题
名校
10 . 已知三次函数有三个不同的零点,若函数也有三个不同的零点,则下列等式或不等式一定成立的有( )
A. | B. |
C. | D. |
您最近一年使用:0次
2023-09-09更新
|
1193次组卷
|
7卷引用:广东省惠州市博罗县博师高级中学2024届高三上学期9月月考数学试题
广东省惠州市博罗县博师高级中学2024届高三上学期9月月考数学试题(已下线)专题2 三次函数问题(过关集训)(已下线)专题11 函数性质相关压轴小题【讲】(高二期末压轴专项)(已下线)重难点突破03 三次函数的图象和性质 (八大题型)-2(已下线)重难点专题 2-2 三次函数图像与性质【10类题型】吉林省长春市朝阳区长春吉大附中实验学校2024-2025学年高三上学期开学数学试题广东省“六校”(清中、河中、北中、惠中、阳中、茂中)2024届高三上学期9月联合摸底数学试题