组卷网 > 章节选题 > 必修第一册
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 600 道试题
1 . 已知函数是偶函数.
(1)求实数k的值.
(2)当时,函数存在零点,求实数a的取值范围.
(3)函数),函数有2个零点,求实数m的取值范围.
2023-05-14更新 | 738次组卷 | 2卷引用:模块十 最后第7节课 函数与导数
2 . 已知函数的定义域为R,若对任意区间,存在,使,则的生成函数.
(1)求证:的生成函数;
(2)若的生成函数,判断并证明的单调性;
(3)若的生成函数,实数,求的一个生成函数.
2023-05-05更新 | 557次组卷 | 4卷引用:上海交通大学附属中学2022-2023学年高一下学期期中数学试题
3 . 已知函数的定义域是,且,当时,,则下列说法正确的是(       
A.
B.函数上是减函数
C.
D.不等式的解集为
2023-02-03更新 | 1354次组卷 | 28卷引用:2023版 北师大版(2019) 必修第一册 突围者 第二章 第三节 函数的单调性和最值
4 . 设函数的定义域为D,集合,若存在非零实数t使得对任意都有,且,则称M上的t-增长函数.
(1)已知函数,判断是否为区间上的-增长函数,并说明理由;
(2)已知函数,且是区间上的n-增长函数,求正整数n的最小值;
(3)如果是定义域为R的奇函数,当时,,且R上的4-增长函数,求实数a的取值范围.
2023-01-30更新 | 192次组卷 | 2卷引用:沪教版(2020) 一轮复习 堂堂清 第二单元 2.3 函数的单调性
5 . 利用函数图像可知内有______个解.
6 . 证明:方程没有整数解.
2023-01-03更新 | 72次组卷 | 1卷引用:沪教版(2020) 必修第一册 单元训练 第5章 函数的应用(A卷)
填空题-双空题 | 较难(0.4) |
7 . 设定义在R上的函数满足,且对任意x都有,则____________.
2022-12-15更新 | 451次组卷 | 4卷引用:黑龙江省绥化市绥棱县2022-2023学年高一上学期期中数学试题
8 . 已知函数.
(1)若,求不等式的解集;
(2)已知函数,且方程有唯一实数解,求实数的取值范围.
2022-11-30更新 | 1303次组卷 | 5卷引用:黑龙江省齐齐哈尔市2020-2021学年高二下学期期末考试数学(文)试题
9 . 若集合A具有以下性质,则称集合A是“好集”:①;②若,则,且时,
(1)分别判断集合,有理数集是否是“好集”,并说明理由;
(2)设集合是“好集”,求证:若,则
(3)对任意的一个“好集”A,判断下面命题的真假,并说明理由;命题:若,则必有
2022-11-17更新 | 643次组卷 | 4卷引用:上海市复旦大学附属中学2022-2023学年高一上学期开学考试数学试题
10 . 形如的函数的图象很像两个“丿”,人们习惯称此类函数为“两撇函数”.它具有如下性质:① 该函数为奇函数;② 该函数在上单调递增.
(1)当时,请举例说明上不是增函数;
(2)已知,设.若,使得,求实数a的取值范围.
2022-11-12更新 | 327次组卷 | 3卷引用:河北省张家口市2022-2023学年高一上学期期中数学试题
共计 平均难度:一般