组卷网 > 知识点选题 > 数列新定义
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 347 道试题
1 . 若数列的项数均为,则将数列的距离定义为.
(1)求数列1,3,5,6和数列2,3,10,7的距离;
(2)记A为满足递推关系的所有数列的集合,数列A中的两个元素,且项数均为.若,数列的距离,求m的最大值;
(3)记S是所有7项数列(其中或1)的集合,,且T中的任何两个元素的距离大于或等于3.求证:T中的元素个数小于或等于16.
2024-05-25更新 | 131次组卷 | 1卷引用:贵州省六盘水市2023-2024学年高二下学期5月期中质量监测数学试题
2 . 变分法是研究变元函数达到极值的必要条件和充要条件,欧拉、拉格朗日等数学家为其奠定了理论基础,其中“平缓函数”是变分法中的一个重要概念.设是定义域为的函数,如果对任意的均成立,则称是“平缓函数”.
(1)若.试判断是否为“平缓函数”?并说明理由;(参考公式:①时,恒成立;②.)
(2)若函数是周期为2的“平缓函数”,证明:对定义域内任意的,均有
(3)设为定义在上的函数,且存在正常数,使得函数为“平缓函数”.现定义数列满足:,试证明:对任意的正整数
(参考公式:时,.)
2024-04-26更新 | 387次组卷 | 3卷引用:云南省昆明市云南师范大学附属中学2023-2024学年高一下学期教学测评期中卷数学试卷
解答题-证明题 | 困难(0.15) |
3 . 已知数列 , 数列 , 其中 , 且 . 记 的前 项和分别为 , 规定 .记 ,且, 且
(1)若,写出
(2)若,写出所有满足条件的数列 , 并说明理由;
(3)若 , 且 . 证明: , 使得
2024-04-22更新 | 718次组卷 | 1卷引用:北京市门头沟区2023-2024学年高三下学期3月综合练习(一模)数学试卷
4 . 差分法的定义:若数列的前项和为,且,则时,.例如:已知数列的通项公式是,前项和为,因为,所以
(1)若数列的通项公式是,求的前项和
(2)若,且数列的前项和分别为,证明:
解答题-证明题 | 困难(0.15) |
名校
5 . 对于数列,…,,记.设数列,…,和数列,…,是两个递增数列,若A满足,且,则称A具有关系.
(1)若数列A:4,7,13和数列:3,具有关系,求的值;
(2)证明:当时,存在无数对具有关系的数列;
(3)当时,直接写出一对具有关系的数列.(本小问不用写解答过程)
2024-05-25更新 | 97次组卷 | 1卷引用:北京市第九中学2023-2024学年高二下学期期中考试数学试题
解答题-证明题 | 较难(0.4) |
解题方法
6 . 已知为有穷正整数数列,,且.从中选取第项,第项,,第,称数列的长度为的子列.规定:数列的任意一项都是的长度为1的子列.若对于任意的正整数,数列存在长度为的子列,使得,则称数列为全覆盖数列.
(1)判断数列和数列是否为全覆盖数列;
(2)在数列中,若,求证:当时,
(3)若数列满足:,且当时,,求证:数列为全覆盖数列.
2024-05-11更新 | 477次组卷 | 1卷引用:北京市昌平区2024届高三第二次统一练习数学试题
7 . 若给定数列,对于任意的,若满足,则称为“型数列”.若数列满足:,当时,
(1)判断数列是否为“型数列”,并证明;
(2)求数列的通项公式;
(3)若,使不等式成立,求实数的取值范围.
2024-05-22更新 | 492次组卷 | 1卷引用:黑龙江省2024届高三信息押题卷(四)数学试卷
解答题-证明题 | 困难(0.15) |
8 . 已知为有穷整数数列,若满足:,其中是两个给定的不同非零整数,且,则称具有性质.
(1)若,那么是否存在具有性质?若存在,写出一个这样的;若不存在,请说明理由;
(2)若,且具有性质,求证:中必有两项相同;
(3)若,求证:存在正整数,使得对任意具有性质,都有中任意两项均不相同.
2024-05-10更新 | 555次组卷 | 1卷引用:北京市东城区2023-2024学年高三下学期综合练习(二)(二模)数学试题
9 . 将数列中项数为平方数的项依次选出构成数列,此时数列中剩下的项构成数列;再将数列中项数为平方数的项依次选出构成数列,剩下的项构成数列;….如此操作下去,将数列中项数为平方数的项依次选出构成数列,剩下的项构成数列
(1)分别写出数列的前2项;
(2)记数列的第项为.求证:当时,
(3)若,求的值.
2024-05-10更新 | 676次组卷 | 1卷引用:北京市丰台区2023-2024学年高三下学期综合练习(二)数学试题
解答题-证明题 | 困难(0.15) |
名校
10 . 已知:为有穷正整数数列,其最大项的值为,且当时,均有.设,对于,定义,其中,表示数集M中最小的数.
(1)若,写出的值;
(2)若存在满足:,求的最小值;
(3)当时,证明:对所有.
2024-04-09更新 | 1110次组卷 | 4卷引用:北京市海淀区2024届高三下学期期中练习(一模)数学试题
共计 平均难度:一般