名校
解题方法
1 . 如图,在四棱锥中,平面平面,为等边三角形,底面是平行四边形,点为的中点,点分别在上,且平面平面.(1)求证:为线段中点;
(2)若点在棱上,猜想:当为何值时,有平面平面,并证明你的猜想.
(2)若点在棱上,猜想:当为何值时,有平面平面,并证明你的猜想.
您最近一年使用:0次
名校
解题方法
2 . 如图,在四棱柱中,四边形为直角梯形,,.过点作平面,垂足为是的中点.(1)在四边形内,过点作,垂足为.
(i)求证:平面平面;
(ii)判断是否共面,并证明.
(2)在棱上是否存在一点,使得平面?若存在,给出证明:若不存在,请说明理由.
(i)求证:平面平面;
(ii)判断是否共面,并证明.
(2)在棱上是否存在一点,使得平面?若存在,给出证明:若不存在,请说明理由.
您最近一年使用:0次
2024-07-01更新
|
219次组卷
|
3卷引用:江苏省泰州市2023-2024学年高一下学期6月期末考试数学试题
名校
解题方法
3 . 如图,已知是圆的直径,平面,是的中点,.
(2)求证:平面平面.
(1)证明:平面;
(2)求证:平面平面.
您最近一年使用:0次
解题方法
4 . 一副三角板如图(1),将其中的沿折起,构造出如图(2)所示的三棱锥,为的中点,连接,使得.
(1)取中点,连接,设平面平面,求证:;
(2)证明:平面⊥平面;
(3)求直线与平面所成角的正弦值.
(1)取中点,连接,设平面平面,求证:;
(2)证明:平面⊥平面;
(3)求直线与平面所成角的正弦值.
您最近一年使用:0次
解题方法
5 . 在四棱锥中,平面ABCD,,.
(1)证明:平面;
(2)若是的中点,求证:平面.
(1)证明:平面;
(2)若是的中点,求证:平面.
您最近一年使用:0次
6 . 在平面四边形中(如图1),,,,E是AB中点,现将△ADE沿DE翻折得到四棱锥(如图2),
(2)图2中,若F是中点,试探究在平面内是否存在无数多个点,都有直线平面,若存在,请证明.
(1)求证:平面平面;
(2)图2中,若F是中点,试探究在平面内是否存在无数多个点,都有直线平面,若存在,请证明.
您最近一年使用:0次
名校
解题方法
7 . 如图①所示,已知正三角形与正方形,将沿翻折至所在的位置,连接,,得到如图②所示的四棱锥.已知,,为上一点,且满足.(1)求证:平面;
(2)在线段上是否存在一点,使得平面.若存在,指出点的位置,并证明你的结论;若不存在,请说明理由.
(2)在线段上是否存在一点,使得平面.若存在,指出点的位置,并证明你的结论;若不存在,请说明理由.
您最近一年使用:0次
2023-04-19更新
|
631次组卷
|
5卷引用:浙江省宁波市北仑中学2022-2023学年高一下学期期中数学试题
浙江省宁波市北仑中学2022-2023学年高一下学期期中数学试题(已下线)立体几何专题:立体几何探索性问题的8种考法(已下线)13.2 基本图形位置关系(分层练习)黑龙江省齐齐哈尔市第八中学校2022-2023学年高一下学期期末数学试题【课后练】专题6翻折问题 课后作业-湘教版(2019)必修(第二册) 第4章 立体几何初步
名校
解题方法
8 . 如图,在三棱柱中,若G,H分别是线段AC,DF的中点.(1)求证:;
(2)在线段CD上是否存在一点,使得平面平面BCF,若存在,指出的具体位置并证明;若不存在,说明理由.
(2)在线段CD上是否存在一点,使得平面平面BCF,若存在,指出的具体位置并证明;若不存在,说明理由.
您最近一年使用:0次
2023-04-13更新
|
3330次组卷
|
11卷引用:浙江省宁波市三锋教研联盟2022-2023学年高一下学期期中联考数学试题
浙江省宁波市三锋教研联盟2022-2023学年高一下学期期中联考数学试题(已下线)立体几何专题:立体几何探索性问题的8种考法(已下线)13.2.4 平面与平面的位置关系 (1)河北定州中学2022-2023学年高一下学期5月月考数学试题江西省宜春市第十中学2024届高二上学期开学检测数学试题新疆阿克苏市实验中学2022-2023学年高一下学期第三次月考数学试题(已下线)8.5.3 平面与平面平行【第三练】“上好三节课,做好三套题“高中数学素养晋级之路(已下线)11.3.3平面与平面平行-同步精品课堂(人教B版2019必修第四册)(已下线)专题突破:空间几何体的动点探究问题-同步题型分类归纳讲与练(人教A版2019必修第二册)【课后练】第4.4节综合训练 课后作业-湘教版(2019)必修(第二册) 第4章 立体几何初步(已下线)第四节直线、平面平行的判定与性质【同步课时】基础卷
名校
解题方法
9 . 如图甲,在四边形中,,.现将沿折起得图乙,点是的中点,点是的中点.
(1)求证:平面;
(2)在图乙中,过直线作一平面,与平面平行,且分别交、于点、,注明、的位置,并证明.
(1)求证:平面;
(2)在图乙中,过直线作一平面,与平面平行,且分别交、于点、,注明、的位置,并证明.
您最近一年使用:0次
名校
解题方法
10 . 几何体是四棱锥,为正三角形,,,为线段的中点.
(1)求证:平面;
(2)线段上是否存在一点,使得四点共面?若存在,请找出点,并证明;若不存在,并说明理由.
(1)求证:平面;
(2)线段上是否存在一点,使得四点共面?若存在,请找出点,并证明;若不存在,并说明理由.
您最近一年使用:0次
2022-11-03更新
|
1024次组卷
|
4卷引用:四川省峨眉第二中学校2022-2023学年高二上学期10月月考理科数学试题
四川省峨眉第二中学校2022-2023学年高二上学期10月月考理科数学试题黑龙江省哈尔滨市宾县第二中学2022-2023学年高三上学期期中考试数学试题(已下线)8.5.3平面与平面平行(精练)-【精讲精练】2022-2023学年高一数学下学期同步精讲精练(人教A版2019必修第二册)(已下线)第26讲 空间直线、平面的平行的判定4种常见方法