组卷网 > 章节选题 > 必修2
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 215 道试题
1 . 如图圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,为圆柱上下底面的圆心,O为球心,EF为底面圆的一条直径,若球的半径,则(       

A.球与圆柱的体积之比为
B.四面体CDEF的体积的取值范围为
C.平面DEF截得球的截面面积最小值为
D.若P为球面和圆柱侧面的交线上一点,则的取值范围为
2 . 如图所示,有一个棱长为4的正四面体容器,的中点,上的动点,则下列说法正确的是(       

   

A.直线所成的角为
B.的周长最小值为
C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为
D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为
3 . 如图,在四棱锥中,MAD为等边三角形,平面平面ABCD,点N在棱MD上,直线平面ACN

   

(1)证明:
(2)设二面角的平面角为,直线CN与平面ABCD所成的角为,若的取值范围是,求的取值范围.
4 . 已知正四棱锥的底面边长为,高为3.以点为球心,为半径的球与过点的球相交,相交圆的面积为,则球的半径为(       
A.B.
C.D.
5 . 如图,在四棱锥中,平面平面.的中点,点上,且.

   

(1)求证:平面
(2)在棱上是否存在点,使得点到平面的距离为,若存在求出点的位置,不存在请说明理由.
2023-07-18更新 | 3176次组卷 | 9卷引用:第11章 简单几何体(压轴必刷30题专项训练)-【满分全攻略】2023-2024学年高二数学同步讲义全优学案(沪教版2020必修第三册)
6 . 已知实数,则的取值范围是______.
2023-02-10更新 | 2704次组卷 | 15卷引用:2.3 直线的交点及距离公式(精练)-2023-2024学年高二数学《一隅三反》系列(人教A版2019选择性必修第一册)
7 . 北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是,所以正四面体在各顶点的曲率为,故其总曲率为

   

(1)求四棱锥的总曲率;
(2)若多面体满足:顶点数-棱数+面数,证明:这类多面体的总曲率是常数.
2021-01-23更新 | 9000次组卷 | 15卷引用:专题20 空间几何解答题(文科)-2
8 . 已知正方体的棱长为为空间中任一点,则下列结论中正确的是(       
A.若为线段上任一点,则所成角的范围为
B.若为正方形的中心,则三棱锥外接球的体积为
C.若在正方形内部,且,则点轨迹的长度为
D.若三棱锥的体积为恒成立,点轨迹的为椭圆的一部分
2023-04-28更新 | 2865次组卷 | 6卷引用:模块九 第6套 1单选 2多选 2填空 2解答题(解析几何 导数)
9 . 底边和腰长之比为的等腰三角形被称为“黄金三角形”,四个面都为“黄金三角形”的四面体被称为“黄金四面体”.“黄金四面体”的外接球与内切球表面积之比为______.
2023-01-03更新 | 2724次组卷 | 7卷引用:“8+4+4”小题强化训练(20)
单选题 | 困难(0.15) |
真题 名校
10 . 设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则
A.B.
C.D.
2019-06-09更新 | 14034次组卷 | 61卷引用:专题04 立体几何——2019年高考真题和模拟题理科数学分项汇编
共计 平均难度:一般