组卷网 > 章节选题 > 选修2-1
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 17 道试题
1 . 已知椭圆的左、右焦点分别为,经过的直线交椭圆于的内切圆的圆心为,若,则该椭圆的离心率是(       
A.B.C.D.
2022-05-27更新 | 11166次组卷 | 28卷引用:江苏省盐城市第一中学2022-2023学年高二上学期第二次学情调研考试数学试题
2 . 如图,在三棱锥中,,记二面角的平面角为

(1)若,求三棱锥的体积;
(2)若MBC的中点,求直线ADEM所成角的取值范围.
2022-01-24更新 | 4998次组卷 | 10卷引用:江苏省盐城市五校联考2022-2023学年高二下学期5月阶段性测试数学试题
3 . 在平面直角坐标系中,已知椭圆的长轴为4,过坐标原点的直线交两点,若分别为椭圆的左、右顶点,且直线与直线的斜率之积为.
(1)求椭圆的标准方程;
(2)若点在第一象限,轴,垂足为,连并延长交于点
(i)证明:为直角三角形;
(ii)若的面积为,求直线的斜率.
4 . 已知椭圆C,过右焦点F的直线lCAB两点,过点Fl垂直的直线交CDE两点,其中BDx轴上方,MN分别为ABDE的中点.当轴时,,椭圆C的离心率为

(1)求椭圆C的标准方程;
(2)证明:直线MN过定点,并求定点坐标;
(3)设G为直线AE与直线BD的交点,求△GMN面积的最小值.
2024-06-11更新 | 832次组卷 | 5卷引用:江苏省盐城市五校联盟2023-2024学年高二下学期第七次考试(5月)数学试题
5 . 已知椭圆的左、右焦点分别为是椭圆上任意一点,直线垂直于且交线段于点,若,则该椭圆的离心率的取值范围是______.
6 . 在平面直角坐标系中,已知为三个不同的定点,且ABC不共线,.以原点为圆心的圆与线段都相切.
(Ⅰ)求圆的方程及的值;
(Ⅱ)若直线与圆相交于两点,且,求的值;
(Ⅲ)在直线上是否存在异于的定点,使得对圆上任意一点,都有为常数?若存在,求出点的坐标及的值;若不存在,请说明理由.
7 . 已知抛物线的焦点到其准线的距离为,椭圆经过抛物线的焦点.
(1)椭圆的离心率,求椭圆短轴的取值范围;
(2)已知为坐标原点,过点的直线与椭圆相交于两点.若,点满足,且的最小值为,求椭圆的离心率.
2023-10-26更新 | 539次组卷 | 2卷引用:江苏省盐城市盐城一中、大丰中学2023-2024学年高二上学期10月联考数学试题
8 . 已知椭圆经过分别为椭圆的左顶点、右顶点、上顶点.
(1)求椭圆的标准方程;
(2)过轴上点(点在椭圆长轴上)作直线交椭圆两点,且,若,求点的坐标;
(3)过点作直线交椭圆点,交直线,直线轴相交于,求证:为定值,并求此定值.(其中分别为直线和直线l的斜率).
2024-05-11更新 | 355次组卷 | 1卷引用:江苏省盐城市三校2023-2024学年高二下学期4月期中联考数学试题
9 . 已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点是椭圆上的不同两点,且以为直径的圆经过原点.
(1)求椭圆的标准方程;
(2)是否存在圆心在原点的圆恒与直线相切,若存在,求出该圆的方程,若不存在,说明理由;
(3)求的最小值.
10 . 已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作与轴不重合的直线交椭圆两点,连接分别交直线两点,若直线的斜率分别为,试问:是否为定值?若是,求出该定值,若不是,请说明理由.
共计 平均难度:一般