名校
解题方法
1 . 若一个椭圆的焦距为质数,且离心率的倒数也为质数,则称这样的椭圆为“质朴椭圆”.
(1)证明:椭圆为“质朴椭圆”.
(2)是否存在实数,使得椭圆为“质朴椭圆”?若存在,求的值;若不存在,说明理由.
(3)设斜率为的直线经过椭圆的右焦点,且与交于,两点,,试问是否为“质朴椭圆”,说明你的理由.
(1)证明:椭圆为“质朴椭圆”.
(2)是否存在实数,使得椭圆为“质朴椭圆”?若存在,求的值;若不存在,说明理由.
(3)设斜率为的直线经过椭圆的右焦点,且与交于,两点,,试问是否为“质朴椭圆”,说明你的理由.
您最近一年使用:0次
2 . 已知双曲线的左、右焦点分别为,,且焦距为4,左顶点为E,过右焦点的动直线l交C于A,B两点,当l垂直于x轴时,.
(1)求C的方程;
(2)若动直线l与C的左支交于点A,右支交于点B,求的取值范围.
(1)求C的方程;
(2)若动直线l与C的左支交于点A,右支交于点B,求的取值范围.
您最近一年使用:0次
3 . 已知点,,动点满足直线与的斜率之积为.记的轨迹为曲线.
(1)求的方程,并说明是什么曲线;
(2)过坐标原点的直线交于,两点,点在第一象限,轴,垂足为,连结并延长交于点.
(ⅰ)证明:以为直径的圆必然经过点.
(ⅱ)求的取值范围,并求当取得最小值时的直线的方程.
(1)求的方程,并说明是什么曲线;
(2)过坐标原点的直线交于,两点,点在第一象限,轴,垂足为,连结并延长交于点.
(ⅰ)证明:以为直径的圆必然经过点.
(ⅱ)求的取值范围,并求当取得最小值时的直线的方程.
您最近一年使用:0次
名校
解题方法
4 . 已知动圆经过点且与直线相切,记圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设过点且斜率为正的直线交曲线于两点(点在点的上方),的中点为,
①过作直线的垂线,垂足分别为,试证明:;
②设线段的垂直平分线交轴于点,若的面积为4,求直线的方程.
(1)求曲线的方程;
(2)设过点且斜率为正的直线交曲线于两点(点在点的上方),的中点为,
①过作直线的垂线,垂足分别为,试证明:;
②设线段的垂直平分线交轴于点,若的面积为4,求直线的方程.
您最近一年使用:0次
2024-10-17更新
|
838次组卷
|
2卷引用:四川省巴中市2025届高三上学期“零诊”考试数学试题
名校
解题方法
5 . 已知是椭圆的右焦点,过点作两条相互垂直的动直线和,与交于,两点,与交于,两点.
(1)若轴,求;
(2)设,分别为线段,的中点,求证:直线过定点.
(1)若轴,求;
(2)设,分别为线段,的中点,求证:直线过定点.
您最近一年使用:0次
2024-09-28更新
|
352次组卷
|
2卷引用:湖南省常德市西洞庭管理区第一中学等多校2025届高三上学期9月联考数学试题
名校
解题方法
6 . 抛物线的焦点为,准线为,斜率分别为的直线均过点,且分别与交于和(其中在第一象限),分别为的中点,直线与交于点,的角平分线与交于点.
(1)求直线的斜率(用表示);
(2)证明:的面积大于.
(1)求直线的斜率(用表示);
(2)证明:的面积大于.
您最近一年使用:0次
2024-09-23更新
|
385次组卷
|
3卷引用:山东省烟台市招远市第二中学等校2025届高三上学期摸底联考数学试题
2025高三·全国·专题练习
解题方法
7 . 已知椭圆的左、右焦点分别为,且在抛物线的准线上,点是上的一个动点,面积的最大值为.
(1)求的方程;
(2)设经过右焦点且斜率不为0的直线交于两点,线段的垂直平分线交轴于点,求的取值范围.
(1)求的方程;
(2)设经过右焦点且斜率不为0的直线交于两点,线段的垂直平分线交轴于点,求的取值范围.
您最近一年使用:0次
解题方法
8 . 已知P为双曲线C:上一点,O为坐标原点,线段OP的垂直平分线与双曲线C相切.
(1)若点P是直线与圆的交点,求a;
(2)求的取值范围.
(1)若点P是直线与圆的交点,求a;
(2)求的取值范围.
您最近一年使用:0次
名校
解题方法
9 . 已知 为抛物线 的焦点, 过点 的直线 与抛物线 交于 两点, 抛物线 在 两点处的切线交于点 .
(1)设 是抛物线 上一点, 证明: 抛物线 在点 处的切线方程为 , 并利用切线方程求点 的纵坐标的值;
(2)点 为抛物线 上异于 的点, 过点 作抛物线 的切线, 分别与线段 交于 .
(i)若 ,求 的值;
(ii)证明:
(1)设 是抛物线 上一点, 证明: 抛物线 在点 处的切线方程为 , 并利用切线方程求点 的纵坐标的值;
(2)点 为抛物线 上异于 的点, 过点 作抛物线 的切线, 分别与线段 交于 .
(i)若 ,求 的值;
(ii)证明:
您最近一年使用:0次
名校
解题方法
10 . 在平面直角坐标系中,抛物线的焦点到准线的距离等于椭圆的短轴长,点在抛物线上,圆(其中).
(1)若为圆上的动点,求线段长度的最小值;
(2)设是抛物线上位于第一象限的一点,过作圆的两条切线,分别交抛物线于点.证明:直线经过定点.
(1)若为圆上的动点,求线段长度的最小值;
(2)设是抛物线上位于第一象限的一点,过作圆的两条切线,分别交抛物线于点.证明:直线经过定点.
您最近一年使用:0次