组卷网 > 章节选题 > 选修2-1
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 309 道试题
2024高三·全国·专题练习
解答题-证明题 | 较难(0.4) |
解题方法
1 . 长为3的线段的两个端点分别在轴上移动,点在直线上且满足
(1)求点的轨迹方程.
(2)记点的轨迹为曲线,过点任作直线交曲线两点,过作斜率为的直线交曲线于另一点.求证:直线与直线的交点为定点(为坐标原点),并求出该定点.
2024-07-20更新 | 169次组卷 | 1卷引用:专题15 利用仿射变换解椭圆、双曲线综合题(高三压轴题)【练】
2 . 已知结论:椭圆上一点处切线方程为.试用此结论解答下列问题.如图,已知椭圆的右焦点为,原点为,椭圆的动弦AB过焦点且不垂直于坐标轴,弦的中点为,椭圆在点AB处的两切线的交点为.
   
(1)试判断:OMN三点是否共线若三点共线,请给出证明;若三点不共线,请说明理由;
(2)求的最小值.
2024-03-19更新 | 576次组卷 | 1卷引用:江苏省常州市第一中学2024届高三下学期期初检测数学试题
3 . 已知椭圆的上顶点为,右焦点为,原点到直线的距离为的面积为1.
(1)求椭圆的方程;
(2)过点的直线交于两点,过点轴于点,过点轴于点交于点.
①求证:点在定直线上,
②求的面积的最大值.
2024-03-10更新 | 435次组卷 | 1卷引用:山东省青岛第五十八中学2023-2024学年高二下学期期初模块检测数学试卷
4 . 已知双曲线的离心率为,左、右顶点分别为,点,且的面积为2.
(1)求的方程;
(2)若过点的直线的左、右两支分别交于两点,直线交于点,直线轴交于点为坐标原点,证明:为定值.
2024-02-27更新 | 524次组卷 | 1卷引用:山东省齐鲁名校联盟2024届高三下学期开学质量检测数学试题
5 . 已知椭圆过点,且离心率为.
(1)求椭圆的标准方程;
(2)设椭圆的左顶点为,上顶点为,已知直线平行于直线,且交椭圆两点,若,求直线的方程.
2023-12-16更新 | 486次组卷 | 1卷引用:四川省达州外国语学校2023-2024学年高二上学期11月月考数学试卷
6 . 如图,已知垂直于梯形所在的平面,矩形的对角线交于点的中点,.
   
(1)求证:平面
(2)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,说明理由.
2023-10-26更新 | 2383次组卷 | 5卷引用:2024届高三第一次统一考试(全国乙卷)理科数学试题
7 . 如图所示,在四棱锥中,底面为直角梯形,分别为的中点,

(1)证明:平面平面
(2)若所成角为,求二面角的余弦值.
8 . 定义椭圆C上的点的“圆化点”为.已知椭圆C的离心率为,“圆化点”D在圆上.
(1)求椭圆C的方程;
(2)设椭圆C的左顶点为A,不过点A的直线l交椭圆CMN两点,点MN的“圆化点”分别为点PQ.记直线lAPAQ的斜率分别为k,若,则直线l是否过定点?若直线l过定点,求定点的坐标;若直线l不过定点,说明理由.
9 . 已知双曲线,点AB在双曲线右支上,O为坐标原点.
(1)若过点A作双曲线的两条渐近线的平行线,分别交两条渐近线于点MN,证明:平行四边形的面积为定值;
(2)若D为垂足,求点D的轨迹的长度.
2023-02-27更新 | 549次组卷 | 3卷引用:浙江省台州市2022-2023学年高二上学期2月期末数学试题
2023高三·全国·专题练习
名校
解题方法
10 . 已知双曲线的焦距为4,以原点为圆心,实半轴长为半径的圆和直线相切.
(1)求双曲线的方程;
(2)已知点为双曲线的左焦点,试问在轴上是否存在一定点,过点任意作一条直线交双曲线两点,使为定值?若存在,求出此定值和所有的定点的坐标;若不存在,请说明理由.
共计 平均难度:一般