2024高三·全国·专题练习
解题方法
1 . 长为3的线段的两个端点分别在轴上移动,点在直线上且满足.
(1)求点的轨迹方程.
(2)记点的轨迹为曲线,过点任作直线交曲线于两点,过作斜率为的直线交曲线于另一点.求证:直线与直线的交点为定点(为坐标原点),并求出该定点.
(1)求点的轨迹方程.
(2)记点的轨迹为曲线,过点任作直线交曲线于两点,过作斜率为的直线交曲线于另一点.求证:直线与直线的交点为定点(为坐标原点),并求出该定点.
您最近一年使用:0次
名校
解题方法
2 . 已知结论:椭圆上一点处切线方程为.试用此结论解答下列问题.如图,已知椭圆:的右焦点为,原点为,椭圆的动弦AB过焦点且不垂直于坐标轴,弦的中点为,椭圆在点A,B处的两切线的交点为.
(1)试判断:O,M,N三点是否共线若三点共线,请给出证明;若三点不共线,请说明理由;
(2)求的最小值.
(1)试判断:O,M,N三点是否共线若三点共线,请给出证明;若三点不共线,请说明理由;
(2)求的最小值.
您最近一年使用:0次
3 . 已知椭圆的上顶点为,右焦点为,原点到直线的距离为的面积为1.
(1)求椭圆的方程;
(2)过点的直线与交于两点,过点作轴于点,过点作轴于点与交于点.
①求证:点在定直线上,
②求的面积的最大值.
(1)求椭圆的方程;
(2)过点的直线与交于两点,过点作轴于点,过点作轴于点与交于点.
①求证:点在定直线上,
②求的面积的最大值.
您最近一年使用:0次
名校
解题方法
4 . 已知双曲线的离心率为,左、右顶点分别为,点,且的面积为2.
(1)求的方程;
(2)若过点的直线与的左、右两支分别交于两点,直线交于点,直线与轴交于点为坐标原点,证明:为定值.
(1)求的方程;
(2)若过点的直线与的左、右两支分别交于两点,直线交于点,直线与轴交于点为坐标原点,证明:为定值.
您最近一年使用:0次
解题方法
5 . 已知椭圆过点,且离心率为.
(1)求椭圆的标准方程;
(2)设椭圆的左顶点为,上顶点为,已知直线平行于直线,且交椭圆于两点,若,求直线的方程.
(1)求椭圆的标准方程;
(2)设椭圆的左顶点为,上顶点为,已知直线平行于直线,且交椭圆于两点,若,求直线的方程.
您最近一年使用:0次
解题方法
6 . 如图,已知垂直于梯形所在的平面,矩形的对角线交于点为的中点,.
(1)求证:平面;
(2)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,说明理由.
(1)求证:平面;
(2)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,说明理由.
您最近一年使用:0次
名校
解题方法
7 . 如图所示,在四棱锥中,底面为直角梯形,∥、、、,、分别为、的中点,.(1)证明:平面平面;
(2)若与所成角为,求二面角的余弦值.
(2)若与所成角为,求二面角的余弦值.
您最近一年使用:0次
2023-11-05更新
|
3478次组卷
|
16卷引用:新疆克拉玛依市2022届高三下学期第三次模拟检测数学(理)试题
新疆克拉玛依市2022届高三下学期第三次模拟检测数学(理)试题广东省广州市奥林匹克中学2021-2022学年高二下学期6月月考数学试题辽宁省铁岭市昌图县第一高级中学2021-2022学年高一下学期期末数学试题(已下线)1.2.4 二面角(已下线)第4讲 空间向量的应用 (3)(已下线)第07讲 空间向量的应用 (2)山西省运城市稷山县稷山中学2023-2024学年高二上学期11月月考数学试题重庆市北碚区缙云教育联盟2024届高考零诊数学试题(已下线)四川省成都市第七中学2023-2024学年高二上学期12月月考数学试题北京市丰台区2023-2024学年高二上学期期末模拟数学试题江西省上饶市广丰区南山中学2023-2024学年高二上学期期末模拟数学试题河南省郑州市第十八中学2023-2024学年高二上学期期末模拟数学试题(三)新疆维吾尔自治区阿克苏地库车市第二中学2023-2024学年高二上学期第二次月考(12月)数学黑龙江省鹤岗市萝北县高级中学2023-2024学年高一下学期7月份考试数学试题云南省大理白族自治州祥云祥华中学2023-2024学年高一下学期6月月考数学试题广东省汕尾市部分学校2023-2024学年高一下学期5月月考数学试卷
名校
解题方法
8 . 定义椭圆C:上的点的“圆化点”为.已知椭圆C的离心率为,“圆化点”D在圆上.
(1)求椭圆C的方程;
(2)设椭圆C的左顶点为A,不过点A的直线l交椭圆C于M,N两点,点M,N的“圆化点”分别为点P,Q.记直线l,AP,AQ的斜率分别为k,,,若,则直线l是否过定点?若直线l过定点,求定点的坐标;若直线l不过定点,说明理由.
(1)求椭圆C的方程;
(2)设椭圆C的左顶点为A,不过点A的直线l交椭圆C于M,N两点,点M,N的“圆化点”分别为点P,Q.记直线l,AP,AQ的斜率分别为k,,,若,则直线l是否过定点?若直线l过定点,求定点的坐标;若直线l不过定点,说明理由.
您最近一年使用:0次
2023-03-02更新
|
852次组卷
|
4卷引用:福建省南平市2022-2023学年高二上学期期末质量检测数学试题
9 . 已知双曲线,点A,B在双曲线右支上,O为坐标原点.
(1)若过点A作双曲线的两条渐近线的平行线,分别交两条渐近线于点M,N,证明:平行四边形的面积为定值;
(2)若,D为垂足,求点D的轨迹的长度.
(1)若过点A作双曲线的两条渐近线的平行线,分别交两条渐近线于点M,N,证明:平行四边形的面积为定值;
(2)若,D为垂足,求点D的轨迹的长度.
您最近一年使用:0次
2023-02-27更新
|
549次组卷
|
3卷引用:浙江省台州市2022-2023学年高二上学期2月期末数学试题
2023高三·全国·专题练习
10 . 已知双曲线的焦距为4,以原点为圆心,实半轴长为半径的圆和直线相切.
(1)求双曲线的方程;
(2)已知点为双曲线的左焦点,试问在轴上是否存在一定点,过点任意作一条直线交双曲线于,两点,使为定值?若存在,求出此定值和所有的定点的坐标;若不存在,请说明理由.
(1)求双曲线的方程;
(2)已知点为双曲线的左焦点,试问在轴上是否存在一定点,过点任意作一条直线交双曲线于,两点,使为定值?若存在,求出此定值和所有的定点的坐标;若不存在,请说明理由.
您最近一年使用:0次
2022-11-22更新
|
1502次组卷
|
6卷引用:专题34 圆锥曲线存在性问题的探究
(已下线)专题34 圆锥曲线存在性问题的探究江西省余干中学2022-2023学年高二上学期(3—26班)第三次半月考(网课)数学试题山西大学附属中学校2022-2023学年高二上学期12月月考数学试题安徽省安庆市2023届安庆第一中学高考三模数学试题广东省梅州市五华县2023届高三上学期12月质检数学试题(已下线)专题15 圆锥曲线综合