组卷网 > 章节选题 > 选修4-5
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 6 道试题
1 . 已知为有穷数列.若对任意的,都有(规定),则称具有性质.设.
(1)判断数列:1,0.1,-0.2,0.5,:1,2,0.7,1.2,2是否具有性质P?若具有性质P,写出对应的集合
(2)若具有性质,证明:
(3)给定正整数,对所有具有性质的数列,求中元素个数的最小值.
2 . 已知由实数组成的数组满足下面两个条件:
;②
(1)当时,求的值;
(2)当时,求证
(3)设,且,求证:
2023-04-22更新 | 503次组卷 | 2卷引用:北京市大兴区第一中学2024届高三上学期10月月考数学试题
解答题-问答题 | 困难(0.15) |
真题 名校
3 . 给定有限个正数满足条件T:每个数都不大于50且总和.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差与所有可能的其他选择相比是最小的,称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为;如此继续构成第三组(余差为)、第四组(余差为)、…,直至第N组(余差为)把这些数全部分完为止.
(1)判断,的大小关系,并指出除第N组外的每组至少含有几个数;
(2)当构成第组后,指出余下的每个数与的大小关系,并证
(3)对任何满足条件T的有限个正数,证明:
2020-12-03更新 | 546次组卷 | 5卷引用:2004 年普通高等学校招生考试数学(理)试题(北京卷)
4 . 已知集合).对于,定义);之间的距离为
(Ⅰ)当时,设.若,求
(Ⅱ)(ⅰ)证明:若,且,使,则
(ⅱ)设,且.是否一定,使?说明理由;
(Ⅲ)记.若,且,求的最大值.
18-19高三下·江苏·阶段练习
5 . 如果数列满足“对任意正整数ij,都存在正整数k,使得”,则称数列具有“性质P”.已知数列是无穷项的等差数列,公差为d.
(1)若,判断数列是否具有“性质P”,并说明理由;
(2)若数列具有“性质P”,求证:
(3)若数列具有“性质P”,且存在正整数k,使得,这样的数列共有多少个?并说明理由.
解答题-证明题 | 困难(0.15) |
名校
6 . 已知集合,且中的元素个数大于等于5.若集合中存在四个不同的元素,使得,则称集合是“关联的”,并称集合是集合的“关联子集”;若集合不存在“关联子集”,则称集合是“独立的”.
分别判断集合和集合是“关联的”还是“独立的”?若是“关联的”,写出其所有的关联子集;
已知集合是“关联的”,且任取集合,总存在的关联子集,使得.若,求证:是等差数列;
集合是“独立的”,求证:存在,使得.
共计 平均难度:一般