组卷网 > 章节选题 > 选修4-5
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 8 道试题
1 . 已知函数
(1)求不等式的解集;
(2)若,且存在使不等式成立,求实数的取值范围.
2024-04-15更新 | 63次组卷 | 2卷引用:2024年普通高等学校招生全国统一考试数学文科猜题卷(二)
2024高三·全国·专题练习

2 . 材料1.类比是获取数学知识的重要思想之一,很多优美的数学结论就是利用类比思想获得的.例如:若,则,当且仅当时,取等号,我们称为二元均值不等式.类比二元均值不等式得到三元均值不等式:,则,当且仅当时,取等号.我们经常用它们求相关代数式或几何问题的最值,某同学做下面几何问题就是用三元均值不等式圆满完成解答的.

题:将边长为的正方形硬纸片(如图1)的四个角裁去四个相同的小正方形后,折成如图2的无盖长方体小纸盒,求纸盒容积的最大值.


   
2024-03-20更新 | 144次组卷 | 2卷引用:第二章 立体几何中的计算 专题七 空间范围与最值问题 微点5 面积、体积的范围与最值问题(三)【基础版】
2024高一上·全国·专题练习
解答题-应用题 | 较易(0.85) |
3 . 一个盒子中红、白、黑三种球分别为x个、y个、z个,黑球个数至少是白球个数的一半,至多是红球个数的 ,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来.
2024-01-10更新 | 51次组卷 | 1卷引用:2.1等式性质与不等式性质【第二课】
4 . 近日,随着新冠肺炎疫情在多地零星散发,为最大程度减少人员流动,减少疫情发生的可能性,高邮政府积极制定政策,决定政企联动,鼓励企业在国庆期间留住员工在本市过节并加班追产,为此,高邮政府决定为波司登制衣有限公司在国庆期间加班追产提供(万元)的专项补贴.波司登制衣有限公司在收到高邮政府(万元)补贴后,产量将增加到(万件).同时波司登制衣有限公司生产(万件)产品需要投入成本为(万元),并以每件元的价格将其生产的产品全部售出.注:收益=销售金额政府专项补贴成本.
(1)求波司登制衣有限公司国庆期间,加班追产所获收益(万元)关于政府补贴(万元)的表达式;
(2)高邮政府的专项补贴为多少万元时,波司登制衣有限公司国庆期间加班追产所获收益(万元)最大?
2023-06-08更新 | 1719次组卷 | 9卷引用:江苏省扬州市高邮市2022-2023学年高一上学期10月阶段测试数学试题
5 . 某公司一年购买某种货物400吨,每次都购买吨(),运费为4万元/次,一年的总存储费用为万元,用表示一年的总运费与总存储费用之和.
(1)请用的表达式表示出
(2)要使一年的总运费与总存储费用之和最小,则每次购买多少吨;
(3)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量需要在什么范围内?
6 . 新能源汽车环保、节能,以电代油,代表了世界汽车产业发展的方向.某新能源公司年初购入一批新能源汽车充电桩,每台12800元,第一年每台充电桩的维修保养费用为1000元,以后每年增加400元,每台充电桩每年可给公司带来6400元的收益.
(1)每台充电桩都从第几年开始获利?(参考数据:
(2)每台充电桩第几年的年平均利润最大?(前n年的年平均利润
2021-11-04更新 | 328次组卷 | 1卷引用:北师大版(2019) 选修第二册 突围者 第一章 第二节 等差数列 课时3 等差数列的前n项和(2)
7 . 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本万元与年产量吨之间的函数关系可以近似地表示为,已知此生产线的年产量最小为60吨,最大为110吨.
(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;
(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.
2021-07-08更新 | 4962次组卷 | 27卷引用:2021年江苏省普通高考对口单招文化统考数学试题
8 . 某建筑公司用8 000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4 000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3 000+50x(单位:元).
(1)求楼房每平方米的平均综合费用f(x)的解析式.
(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
共计 平均难度:一般