椭圆的焦点、是双曲线的顶点,其顶点是双曲线的焦点.双曲线的渐近线是,椭圆与双曲线有一个交点,的周长为.
(1)求椭圆与双曲线的标准方程;
(2)设直线交双曲线于、两点,交直线于点,若.证明:为的中点;
(3)过点作一动直线交椭圆于A、两点,记.若在线段上取一点,使得,求点的轨迹方程.
(1)求椭圆与双曲线的标准方程;
(2)设直线交双曲线于、两点,交直线于点,若.证明:为的中点;
(3)过点作一动直线交椭圆于A、两点,记.若在线段上取一点,使得,求点的轨迹方程.
更新时间:2023/05/27 22:22:38
|
相似题推荐
解答题-证明题
|
较难
(0.4)
名校
解题方法
【推荐1】已知椭圆的左焦点为,点在上.
(1)求椭圆的方程;
(2)过的两条互相垂直的直线分别交于两点和两点,若的中点分别为,证明:直线必过定点,并求出此定点坐标.
您最近一年使用:0次
解答题-问答题
|
较难
(0.4)
【推荐2】已知椭圆的长轴长为4,离心率为,一动圆过椭圆右焦点,且与直线相切.
(1)求椭圆的方程及动圆圆心轨迹的方程;
(2)过作两条互相垂直的直线,分别交椭圆于,两点,交曲线于,两点,求四边形面积的最小值.
(1)求椭圆的方程及动圆圆心轨迹的方程;
(2)过作两条互相垂直的直线,分别交椭圆于,两点,交曲线于,两点,求四边形面积的最小值.
您最近一年使用:0次
解答题-问答题
|
较难
(0.4)
名校
解题方法
【推荐1】以双曲线的右焦点为圆心作圆,与的一条渐近线相切于点
(1)求的方程.
(2)在轴上是否存在定点,过点任意作一条不与坐标轴垂直的直线,当与交于两点时,直线的斜率之和为定值?若存在,求出点的坐标,若不存在,说明理由.
(1)求的方程.
(2)在轴上是否存在定点,过点任意作一条不与坐标轴垂直的直线,当与交于两点时,直线的斜率之和为定值?若存在,求出点的坐标,若不存在,说明理由.
您最近一年使用:0次
解答题-问答题
|
较难
(0.4)
名校
解题方法
【推荐2】已知双曲线的虚轴长为4,渐近线方程为.
(1)求双曲线的标准方程;
(2)设,是双曲线上的动点,求的最小值;
(3)过双曲线右焦点的直线与双曲线的左、右两支分别交于点、,点是线段的中点,过点且与垂直的直线交直线于点,点满足,求四边形面积的最小值.
(1)求双曲线的标准方程;
(2)设,是双曲线上的动点,求的最小值;
(3)过双曲线右焦点的直线与双曲线的左、右两支分别交于点、,点是线段的中点,过点且与垂直的直线交直线于点,点满足,求四边形面积的最小值.
您最近一年使用:0次
解答题-问答题
|
较难
(0.4)
名校
解题方法
【推荐1】设椭圆的方程为,点为坐标原点,点、的坐标分别为、,点在线段上,满足,直线的斜率为.
(1)求椭圆的方程;
(2)若动直线与椭圆交于、两点,且恒有,是否存在一个以原点为圆心的定圆,使得动直线始终与定圆相切?若存在,求圆的方程,若不存在,请说明理由.
(1)求椭圆的方程;
(2)若动直线与椭圆交于、两点,且恒有,是否存在一个以原点为圆心的定圆,使得动直线始终与定圆相切?若存在,求圆的方程,若不存在,请说明理由.
您最近一年使用:0次
【推荐2】已知椭圆的离心率为e,且过,两点.
(1)求椭圆E的方程;
(2)若经过有两条直线,,它们的斜率互为倒数,与椭圆E交于A,B两点,与椭圆E交于C,D两点,P,Q分别是,的中点.试探究:与的面积之比是否为定值?若是,请求出此定值;若不是,请说明理由.
(1)求椭圆E的方程;
(2)若经过有两条直线,,它们的斜率互为倒数,与椭圆E交于A,B两点,与椭圆E交于C,D两点,P,Q分别是,的中点.试探究:与的面积之比是否为定值?若是,请求出此定值;若不是,请说明理由.
您最近一年使用:0次
解答题-证明题
|
较难
(0.4)
解题方法
【推荐1】设双曲线的焦距为6,点在双曲线上.
(1)求双曲线的方程;
(2)已知的右焦点为是直线上一点,直线交双曲线于两点(在第一象限),过点作直线的平行线与直线交于点,与轴交于点,证明:为线段的中点.
(1)求双曲线的方程;
(2)已知的右焦点为是直线上一点,直线交双曲线于两点(在第一象限),过点作直线的平行线与直线交于点,与轴交于点,证明:为线段的中点.
您最近一年使用:0次
【推荐2】圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形. 在一次以“圆锥曲线的阿基米德三角形”为主题的数学探究活动中,甲同学以如图示的抛物线C:的阿基米德三角形为例,经探究发现:若AB为过焦点的弦,则:①点P在定直线上;②;③.已知△PAB为等轴双曲线的阿基米德三角形,AB过Γ的右焦点F.
(1)试探究甲同学得出的结论,类比到此双曲线情境中,是否仍然成立?(选择一个结论进行探究即可)
(2)若,弦AB的中点为Q,,求点P的坐标.
(注:双曲线的以为切点的切线方程为
(1)试探究甲同学得出的结论,类比到此双曲线情境中,是否仍然成立?(选择一个结论进行探究即可)
(2)若,弦AB的中点为Q,,求点P的坐标.
(注:双曲线的以为切点的切线方程为
您最近一年使用:0次